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Abstract 
 

In recently years, many traditional ASIC applications 
are moving towards a more flexible FPGA based design. 
To establish a complete application system, it often needs 
a separate processor to achieve some interactive system 
functionalities such as I/O operations and control-
sensitive tasks. Modern chip producers (Xilinx, Altera, 
etc) are promoting economic, yet powerful FPGA chips 
that have the capacity of migrating a general DSP or 
Microprocessor into one FPGA chip. The trend is that 
both a general CPU module and the application specific 
circuit are to coexist on a single chip. This article 
introduces a MIPs CPU architecture or ECOMIPS to be 
implemented for that purpose. It focuses on economic 
resource utilization on modern chips (Xilinx Spartan 3 
families). Traditional MIPs architecture was modified to 
avoid resource conflicts with the ASIC part. The key 
principles of designing such MIPs HDL IP cores are 
covered and analyzed with implementation results. As a 
second objective, ECOMIPS also tries to make itself a 
customizable and reusable architecture for bridging the 
gap between microprocessor and ASIC. 
 
 
1. Introduction 
 

In recently years, many traditional ASIC applications 
are moving towards a more flexible FPGA based design. 
To establish a complete application system [3], it often 
needs a separate co-processor to achieve some interactive 
system functionalities such as I/O operations and control-
sensitive tasks. Modern chip producers (Xilinx Corp, 
Altera, etc) are promoting economic, yet powerful FPGA 
chips that have the capacity of migrating a general DSP or 
Microprocessor into one FPGA chip. The trend is that 
both a general CPU module and the application specific 
circuit are to coexist on a single chip. The integrated chip 
will not only reduce the cost of the product, but also 
increase the system’s overall speed. What’s more, by 
embedding a fast CPU module in the FPGA, it will open 
up new possibilities of redistributing processing tasks 

between the CPU and the original ASIC, hence reduce the 
complexity of the system and ease the design of both. 

Yet, a few of obstacles must be resolved. Firstly, 
FPGA has limited chip resources and a general purpose 
CPU module will use up too many of them. Secondly, 
even we manage to accommodate the two units in one 
chip, if without carefully designed architecture, it will be 
difficult to reuse the CPU module in other applications or 
in the improved version of the same system. Thirdly, 
commercial CPU IP cores rarely meet the system’s design 
specification in its original form and is usually too well 
encapsulated to be modified freely. Moreover it is usually 
less customizable than a self-designed CPU core. 

This article introduces MIPs CPU architecture or 
ECOMIPS to be implemented on the same chip as 
application specific FPGA. It focuses on economic 
resource utilization on modern chips (Xilinx Spartan 3 
families [1]). Traditional MIPs architecture was modified 
to avoid resource conflicts with the ASIC part. The key 
principles of designing such MIPs IP cores are covered 
and analyzed with implementation results. As a second 
objective, ECOMIPS also tries to make itself a 
customizable and reusable framework [4, 5, 7, 8] to be 
used for various applications. Throughout section 2, we 
give a few hints on how to augment current ECOMIPS 
into a reconfigurable architecture; another literature will 
focus on reconfiguring ECOMIPS. 
 
2. ECOMIPS Architecture 
 

ECOMIPS is a compact 32-bit MIPs CPU module to 
be embedded in a FPGA chip. By taking advantages of 
modern FPGA chip, the system itself consumes very little 
chip resources and leaves abundant room for 
implementing other specialized control and processing 
modules. A set of software tools have been developed to 
facilitate the process of redesigning the MIPs processor, 
so that it would be easy to reuse the CPU core for various 
applications.   

Modern FPGA chips like the Xilinx Spartan 3 families 
provide many kinds of specialized resources as well as 
ever increasing gate numbers. Table 1 provides a list of 



selected features on Spartan 3 chip families [1, 2]. 
Some of these resources are general purpose ones and 

used by almost all modules in the chip. However, some 
resources like multipliers, wide multiplexers, blocked 
RAM and DCM (with high resolution phase shifting) are 
not extensively used by most computational modules. 
When a specialized FPGA chip is at work, many of its 
dedicated resources are left unused. ECOMIPS takes 
advantages of those often unused resources and relieves 
resource racing on other logic cells on the chip. 

Table 1. Selected Xilinx Spartan 3 features 
•  Logic resources  
 - Abundant logic cells with shift register capability  
 - Wide multiplexers  
 - Fast look-ahead carry logic  
•  SelectRAM™ hierarchical memory  
 - Up to 1,872 Kbits of total block RAM  
 - Up to 520 Kbits of total distributed RAM  

•  Digital Clock Manager (up to four DCMs)  
 - Frequency synthesis  
 - High resolution phase shifting  

 
2.1. Microprogram controller 
 

In CPU, the two modules that consume most gate 
resources are Arithmetic Logic Unit (ALU) and 
sequencing control unit (or microprogram controller). For 
speed concerns, most CPU systems derive sequencing 
control unit from well designed finite state machines. 
Another approach is to code all sequencing logic into 
micro-program and store it into a RAM/ROM block. Both 
designs have their own advantages over the other. 
ECOMIPS uses the RAM based microprogram approach 
for the following reasons: (1) blocked RAM is a rich 
resource in modern FPGA chips. (2) It is much easier to 
design new CPU functions such as adding application 
specific instruction set and custom datapath. (3) The 
complexity of the sequencing circuits does not increase 
with the complexity of sequencing logic. (4) By turning 
sequencing logic into software (microprogram), it’s much 
easier to do a kernel context-switch [9] or update 
sequencing logic at both design time and run-time. 

Microprogram storage unit is implemented as a 
Blocked RAM primitive in ECOMIPS. If the micro-
instruction width is 18bits, a single blocked RAM is able 
to accommodate 256 micro-instructions on a Xilinx 
Spartan 3 chip. In most cases, one blocked RAM will be 
far sufficient for storing the entire microprogram. So the 
sacrifice of one blocked RAM can replace all the 
sequencing logic which would otherwise use up a large 
amount of gate resources in FPGA. Table 2 compares the 
resource consumption of 32 bits ECOMIPS controller 
with an 8 bits 8031 controller. The synthesizer used for 

both HDL modules is Xilinx XST. 
We see that sequencing circuits eat up over 50% of 

resources in a general CPU like 8 bits 8031 core. 
However, with the controller logic moved to a blocked 
RAM, ECOMIPS’ microprogram controller almost does 
not need any logic cell resource at all. 

Table 2. Controller resource compare 
Resource  \  

module 
32 bits 

ECOMIPS 
controller 

8 bits 
8031 

controller 

8 bits 
8031 
core 

Number of 
Slices: 

10 154 250 

Number of Slice 
Flip Flops: 

8 40 129 

Number of 4 
input LUTs: 

17 287 468 

ECOMIPS further reduces gate complexities in 
microprogram controller by using a single dispatch 
scheme. Every MIP instruction is dispatched immediately 
after the instruction fetch phase is finished. Dispatch is 
done directly using the 6 bits Opcode from the instruction; 
therefore no separate dispatch ROM is needed.  In other 
words, the micro-instructions in the RAM is indexed with 
Opcode and every instruction is dispatched only once (see 
Figure 1).  

 
Figure 1. Microprogram execution path 

The microcode in ECOMIPS maps directly to control 
signals in the datapath. Therefore, no translation circuit is 
needed. 

However, the speed of reading one word from a 
blocked RAM is not as fast as that from a combinatorial 
circuit and the maximum system clock rate of the 
ECOMIPS is almost linearly dependent on the speed of 
blocked RAM in the FPGA. Fortunately the speed of 
RAM access has been made very fast in modern FPGA 
chips, currently in less than 15 nanoseconds. If the 
clocking scheme is properly designed, the maximum CPU 
clock rate can still be as high as 64MHZ. 



 
2.2. Register files 

 
ECOMIPS has 32 32-bit registers that are directly 

accessible in its instruction. Again to save flip-flop 
resources on FPGA, the ECOMIPS uses another blocked 
RAM for storing all 32 registers.  Xilinx Spartan 3 chip 
supports dual-port synchronous access [1] to its blocked 
RAM which is the ideal solution to register file in MIPs 
architecture.  

 
2.3. Memory 
 

The time to read one instruction from the memory 
directly affects the overall speed of the CPU. So memory 
must be kept close to the CPU. In ECOMIPS, it is 
implemented as a bunch of blocked RAMs. The speed to 
fetch one instruction is as fast as accessing register file or 
microprogram. However, the number of blocked RAM 
varies dramatically in different FPGA chips and so does 
the cost. Hence, the size of in-chip memory can not be 
very large. An average Xilinx Spartan3 400 chip can hold 
9000 MIP instructions or 32-bit data words in its memory 
at most. In some applications, an external storage (a ROM 
for instance) must be used to accommodate large 
programs. In such cases, explicit MIPS I/O commands 
should be called to swap data in and out of the memory. 
Yet, it’s up to the software program (a simple operating 

system or swap algorithm [6, 8]) to do the trick. Whether 
a system has external storage or not, the first program that 
ECOMIPS executes is always in RAM memory. 
Currently, FPGA RAM content can only be initialized by 
setting its initialization parameters in its HDL files. Those 
lines of HDL codes are even more difficult to understand 
than binary MIPS code. So currently, ECOMIPS uses a 
code converter program as shown in Figure 2.  

 
Figure 2. Writing MIPS program 

 
It helps ECOMIPS developers to convert binary MIPS 

codes or MIPS instructions into valid HDL RAM 
initialization strings. 

 
Figure 3. ECOMIPS datapath 

2.4. Memory mapped I/O 
 

An efficient I/O management scheme is the memory 
mapped I/O. In ECOMIPS, I/O polling modules share the 

data and address bus with the memory module. The high 
unused bits in the address input are used to decide 
whether the data is in the memory or in an I/O device. If 
it’s the latter, the corresponding I/O module is enabled to 



access the data and returns the result through the standard 
memory data bus. There is no central arbitrator for bus 
usage; each I/O device (including the memory) is 
responsible for handling mutual exclusive use for the 
memory bus lines. This distributed scheme is more 
flexible. The address space of ECOMIPS is 4GB which is 
too large for embedded CPU. Therefore, we are free to 
use memory-mapping techniques for interfacing the CPU 
with the other application specific circuits in the FPGA; 
it’s even possible to do a full system context-switch [9] 
by simply executing programs in different address space 
of the CPU. This simple approach of ECOMIPS has been 
used in a High-performance Servo Controller for PMSM 
[3] for its position feedback and user interface control.  

 
2.5. Datapath and clocking 

 
ECOMIPS uses a modified version of a standard MIPS 

multi-cycle datapath as shown in Figure 3. 
 Blocked RAM in Xilinx Spartan 3 chip saves output 

in registers; the output from these registers should be used 
directly to drive combinatorial circuits instead of 
connecting to explicit cache registers in the datapath. By 
taking advantage of this feature, three 32 bits registers 
can be removed from the datapath. 

A general CPU core has many synchronous units. It is 
both difficult and inefficient to associate all units with a 
single global clock signal. What’s more, the speed of 
these units differs greatly. For example, the speed of a 
blocked RAM and a simple flip-flop differ in several 
nanoseconds. So it’s usually more desirable to group 
synchronous units according to their speed and allocate 
them with a distinct clock signal.  

Xilinx Spartan-3 devices [1, 2] provide precise and 
complete control over clock phase shift by employing a 
Delay-Locked Loop (DLL), a fully digital control system 
that uses feedback to maintain clock signal characteristics 
with a high degree of precision. 

ECOMIPS redesigns the CPU’s clocking scheme over 
the entire circuit and phases the system clock into 4 clock 
signals. They have the same frequency as the system 
clock; yet, each is precisely delayed in nanoseconds than 
the previous one according to their usage. By doing so, 
the CPU clock rate can still depend solely on the slowest 
synchronous unit in the datapath, while increasing the 
simplicity and clarity of the whole CPU datapath. 

 
3. Implementation result 
 

ECOMIPS has been synthesized on a Xilinx Spartan3 
400 chip with Xilinx XST. The maximum CPU clock rate 

is 64MHz. The synthesis report is shown in Table 3.  
The customizable parts are memory module and ALU 

module. The total resource will be significantly cut down, 
if the size of memory is reduced or ALU data width is 
decreased.  

Table 3. Resource usage 
Module \ 
number 

Slices Slice Flip 
Flop 

4 input 
LUTs 

BRAMs

Microprogram 
controller 

10 8 17 1 

ALU control  3 0 5 0 
Register file 3 0 6 1 
I/O controller  10 0 18 0 
32 bits memory 35 2 69 4 
32 bits ALU 76 0 141 0 
 

4. Conclusion 
 
Modern FPGA chips have provided developers with 

rich resources for embedding a CPU module in the 
original application specific circuit. ECOMIPS is 
designed to take full advantages of chip resources. It 
explores how a general reconfigurable MIPS design can 
be implemented on modern chip families (Xilinx 
Spartan3) with minimum resource consumption. We have 
included many design details and principles in this 
literature, hoping to provide a useful guide for 
implementing integrated FPGA design in real 
applications. 
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