
ECOMIPS: An Economic MIPS CPU Design on FPGA

Xizhi Li
The CKC honored School of Zhejiang

University, P.R. China
LiXizhi@zju.edu.cn

Tiecai Li
Department of Electrical Engineering

Harbin Institute of Technology
litc611@public.hr.hl.cn

Abstract

In recently years, many traditional ASIC applications
are moving towards a more flexible FPGA based design.
To establish a complete application system, it often needs
a separate processor to achieve some interactive system
functionalities such as I/O operations and control-
sensitive tasks. Modern chip producers (Xilinx, Altera,
etc) are promoting economic, yet powerful FPGA chips
that have the capacity of migrating a general DSP or
Microprocessor into one FPGA chip. The trend is that
both a general CPU module and the application specific
circuit are to coexist on a single chip. This article
introduces a MIPs CPU architecture or ECOMIPS to be
implemented for that purpose. It focuses on economic
resource utilization on modern chips (Xilinx Spartan 3
families). Traditional MIPs architecture was modified to
avoid resource conflicts with the ASIC part. The key
principles of designing such MIPs HDL IP cores are
covered and analyzed with implementation results. As a
second objective, ECOMIPS also tries to make itself a
customizable and reusable architecture for bridging the
gap between microprocessor and ASIC.

1. Introduction

In recently years, many traditional ASIC applications
are moving towards a more flexible FPGA based design.
To establish a complete application system [3], it often
needs a separate co-processor to achieve some interactive
system functionalities such as I/O operations and control-
sensitive tasks. Modern chip producers (Xilinx Corp,
Altera, etc) are promoting economic, yet powerful FPGA
chips that have the capacity of migrating a general DSP or
Microprocessor into one FPGA chip. The trend is that
both a general CPU module and the application specific
circuit are to coexist on a single chip. The integrated chip
will not only reduce the cost of the product, but also
increase the system’s overall speed. What’s more, by
embedding a fast CPU module in the FPGA, it will open
up new possibilities of redistributing processing tasks

between the CPU and the original ASIC, hence reduce the
complexity of the system and ease the design of both.

Yet, a few of obstacles must be resolved. Firstly,
FPGA has limited chip resources and a general purpose
CPU module will use up too many of them. Secondly,
even we manage to accommodate the two units in one
chip, if without carefully designed architecture, it will be
difficult to reuse the CPU module in other applications or
in the improved version of the same system. Thirdly,
commercial CPU IP cores rarely meet the system’s design
specification in its original form and is usually too well
encapsulated to be modified freely. Moreover it is usually
less customizable than a self-designed CPU core.

This article introduces MIPs CPU architecture or
ECOMIPS to be implemented on the same chip as
application specific FPGA. It focuses on economic
resource utilization on modern chips (Xilinx Spartan 3
families [1]). Traditional MIPs architecture was modified
to avoid resource conflicts with the ASIC part. The key
principles of designing such MIPs IP cores are covered
and analyzed with implementation results. As a second
objective, ECOMIPS also tries to make itself a
customizable and reusable framework [4, 5, 7, 8] to be
used for various applications. Throughout section 2, we
give a few hints on how to augment current ECOMIPS
into a reconfigurable architecture; another literature will
focus on reconfiguring ECOMIPS.

2. ECOMIPS Architecture

ECOMIPS is a compact 32-bit MIPs CPU module to
be embedded in a FPGA chip. By taking advantages of
modern FPGA chip, the system itself consumes very little
chip resources and leaves abundant room for
implementing other specialized control and processing
modules. A set of software tools have been developed to
facilitate the process of redesigning the MIPs processor,
so that it would be easy to reuse the CPU core for various
applications.

Modern FPGA chips like the Xilinx Spartan 3 families
provide many kinds of specialized resources as well as
ever increasing gate numbers. Table 1 provides a list of

selected features on Spartan 3 chip families [1, 2].
Some of these resources are general purpose ones and

used by almost all modules in the chip. However, some
resources like multipliers, wide multiplexers, blocked
RAM and DCM (with high resolution phase shifting) are
not extensively used by most computational modules.
When a specialized FPGA chip is at work, many of its
dedicated resources are left unused. ECOMIPS takes
advantages of those often unused resources and relieves
resource racing on other logic cells on the chip.

Table 1. Selected Xilinx Spartan 3 features
• Logic resources
 - Abundant logic cells with shift register capability
 - Wide multiplexers
 - Fast look-ahead carry logic
• SelectRAM™ hierarchical memory
 - Up to 1,872 Kbits of total block RAM
 - Up to 520 Kbits of total distributed RAM

• Digital Clock Manager (up to four DCMs)
 - Frequency synthesis
 - High resolution phase shifting

2.1. Microprogram controller

In CPU, the two modules that consume most gate
resources are Arithmetic Logic Unit (ALU) and
sequencing control unit (or microprogram controller). For
speed concerns, most CPU systems derive sequencing
control unit from well designed finite state machines.
Another approach is to code all sequencing logic into
micro-program and store it into a RAM/ROM block. Both
designs have their own advantages over the other.
ECOMIPS uses the RAM based microprogram approach
for the following reasons: (1) blocked RAM is a rich
resource in modern FPGA chips. (2) It is much easier to
design new CPU functions such as adding application
specific instruction set and custom datapath. (3) The
complexity of the sequencing circuits does not increase
with the complexity of sequencing logic. (4) By turning
sequencing logic into software (microprogram), it’s much
easier to do a kernel context-switch [9] or update
sequencing logic at both design time and run-time.

Microprogram storage unit is implemented as a
Blocked RAM primitive in ECOMIPS. If the micro-
instruction width is 18bits, a single blocked RAM is able
to accommodate 256 micro-instructions on a Xilinx
Spartan 3 chip. In most cases, one blocked RAM will be
far sufficient for storing the entire microprogram. So the
sacrifice of one blocked RAM can replace all the
sequencing logic which would otherwise use up a large
amount of gate resources in FPGA. Table 2 compares the
resource consumption of 32 bits ECOMIPS controller
with an 8 bits 8031 controller. The synthesizer used for

both HDL modules is Xilinx XST.
We see that sequencing circuits eat up over 50% of

resources in a general CPU like 8 bits 8031 core.
However, with the controller logic moved to a blocked
RAM, ECOMIPS’ microprogram controller almost does
not need any logic cell resource at all.

Table 2. Controller resource compare
Resource \

module
32 bits

ECOMIPS
controller

8 bits
8031

controller

8 bits
8031
core

Number of
Slices:

10 154 250

Number of Slice
Flip Flops:

8 40 129

Number of 4
input LUTs:

17 287 468

ECOMIPS further reduces gate complexities in
microprogram controller by using a single dispatch
scheme. Every MIP instruction is dispatched immediately
after the instruction fetch phase is finished. Dispatch is
done directly using the 6 bits Opcode from the instruction;
therefore no separate dispatch ROM is needed. In other
words, the micro-instructions in the RAM is indexed with
Opcode and every instruction is dispatched only once (see
Figure 1).

Figure 1. Microprogram execution path

The microcode in ECOMIPS maps directly to control
signals in the datapath. Therefore, no translation circuit is
needed.

However, the speed of reading one word from a
blocked RAM is not as fast as that from a combinatorial
circuit and the maximum system clock rate of the
ECOMIPS is almost linearly dependent on the speed of
blocked RAM in the FPGA. Fortunately the speed of
RAM access has been made very fast in modern FPGA
chips, currently in less than 15 nanoseconds. If the
clocking scheme is properly designed, the maximum CPU
clock rate can still be as high as 64MHZ.

2.2. Register files

ECOMIPS has 32 32-bit registers that are directly

accessible in its instruction. Again to save flip-flop
resources on FPGA, the ECOMIPS uses another blocked
RAM for storing all 32 registers. Xilinx Spartan 3 chip
supports dual-port synchronous access [1] to its blocked
RAM which is the ideal solution to register file in MIPs
architecture.

2.3. Memory

The time to read one instruction from the memory
directly affects the overall speed of the CPU. So memory
must be kept close to the CPU. In ECOMIPS, it is
implemented as a bunch of blocked RAMs. The speed to
fetch one instruction is as fast as accessing register file or
microprogram. However, the number of blocked RAM
varies dramatically in different FPGA chips and so does
the cost. Hence, the size of in-chip memory can not be
very large. An average Xilinx Spartan3 400 chip can hold
9000 MIP instructions or 32-bit data words in its memory
at most. In some applications, an external storage (a ROM
for instance) must be used to accommodate large
programs. In such cases, explicit MIPS I/O commands
should be called to swap data in and out of the memory.
Yet, it’s up to the software program (a simple operating

system or swap algorithm [6, 8]) to do the trick. Whether
a system has external storage or not, the first program that
ECOMIPS executes is always in RAM memory.
Currently, FPGA RAM content can only be initialized by
setting its initialization parameters in its HDL files. Those
lines of HDL codes are even more difficult to understand
than binary MIPS code. So currently, ECOMIPS uses a
code converter program as shown in Figure 2.

Figure 2. Writing MIPS program

It helps ECOMIPS developers to convert binary MIPS

codes or MIPS instructions into valid HDL RAM
initialization strings.

Figure 3. ECOMIPS datapath

2.4. Memory mapped I/O

An efficient I/O management scheme is the memory
mapped I/O. In ECOMIPS, I/O polling modules share the

data and address bus with the memory module. The high
unused bits in the address input are used to decide
whether the data is in the memory or in an I/O device. If
it’s the latter, the corresponding I/O module is enabled to

access the data and returns the result through the standard
memory data bus. There is no central arbitrator for bus
usage; each I/O device (including the memory) is
responsible for handling mutual exclusive use for the
memory bus lines. This distributed scheme is more
flexible. The address space of ECOMIPS is 4GB which is
too large for embedded CPU. Therefore, we are free to
use memory-mapping techniques for interfacing the CPU
with the other application specific circuits in the FPGA;
it’s even possible to do a full system context-switch [9]
by simply executing programs in different address space
of the CPU. This simple approach of ECOMIPS has been
used in a High-performance Servo Controller for PMSM
[3] for its position feedback and user interface control.

2.5. Datapath and clocking

ECOMIPS uses a modified version of a standard MIPS

multi-cycle datapath as shown in Figure 3.
 Blocked RAM in Xilinx Spartan 3 chip saves output

in registers; the output from these registers should be used
directly to drive combinatorial circuits instead of
connecting to explicit cache registers in the datapath. By
taking advantage of this feature, three 32 bits registers
can be removed from the datapath.

A general CPU core has many synchronous units. It is
both difficult and inefficient to associate all units with a
single global clock signal. What’s more, the speed of
these units differs greatly. For example, the speed of a
blocked RAM and a simple flip-flop differ in several
nanoseconds. So it’s usually more desirable to group
synchronous units according to their speed and allocate
them with a distinct clock signal.

Xilinx Spartan-3 devices [1, 2] provide precise and
complete control over clock phase shift by employing a
Delay-Locked Loop (DLL), a fully digital control system
that uses feedback to maintain clock signal characteristics
with a high degree of precision.

ECOMIPS redesigns the CPU’s clocking scheme over
the entire circuit and phases the system clock into 4 clock
signals. They have the same frequency as the system
clock; yet, each is precisely delayed in nanoseconds than
the previous one according to their usage. By doing so,
the CPU clock rate can still depend solely on the slowest
synchronous unit in the datapath, while increasing the
simplicity and clarity of the whole CPU datapath.

3. Implementation result

ECOMIPS has been synthesized on a Xilinx Spartan3
400 chip with Xilinx XST. The maximum CPU clock rate

is 64MHz. The synthesis report is shown in Table 3.
The customizable parts are memory module and ALU

module. The total resource will be significantly cut down,
if the size of memory is reduced or ALU data width is
decreased.

Table 3. Resource usage
Module \
number

Slices Slice Flip
Flop

4 input
LUTs

BRAMs

Microprogram
controller

10 8 17 1

ALU control 3 0 5 0
Register file 3 0 6 1
I/O controller 10 0 18 0
32 bits memory 35 2 69 4
32 bits ALU 76 0 141 0

4. Conclusion

Modern FPGA chips have provided developers with

rich resources for embedding a CPU module in the
original application specific circuit. ECOMIPS is
designed to take full advantages of chip resources. It
explores how a general reconfigurable MIPS design can
be implemented on modern chip families (Xilinx
Spartan3) with minimum resource consumption. We have
included many design details and principles in this
literature, hoping to provide a useful guide for
implementing integrated FPGA design in real
applications.

References
[1] Xilinx Corp, Spartan 3 data sheet, 2003
[2] Xilinx Corp, Xilinx ISE 6.1i Lib Guide, 2003
[3] Zhao-yong Zhou and Li Tiecai, FPGA Realization of a
High-performance Servo Controller for PMSM, APEC04, 2004
[4] John Reid Hauser, Augmenting a Microprocessor with
Reconfigurable Hardware, PHD thesis. UC Berkeley, 2000.
[5] John R. Hauser and JohnWawrzynek, Garp: A MIPS
Processor with a Reconfigurable Coprocessor, FCCM '97.
[6] M. Gschwind and D.Maurer, An extendable MIPS-I
processor kernel in VHDL for hardware/software co-design,
Proceedings of the conference on European design automation,
1996.
[7] R. Hartenstein, A decade of reconfigurable computing : a
visionary retrospective, Proceedings of the conference on
Design, automation and test in Europe (March 2001).
[8] Jeffrey A. Jacob and Paul Chow, Memory Interfacing and
Instruction Specification for Reconfigurable Processors,
international symposium on Field programmable gate arrays
[9] Kiran Puttegowda, Context Switching Strategies in a Run-
Time Reconfigurable system, PHD thesis: Virginia Polytechnic
Institute and State University, 2002.

