
DHCI: an HCI Framework in Distributed Environment

Xizhi Li

The CKC honors school of Zhejiang University
College of computer science, Hangzhou, China, 310027

Email: lixizhi@zju.edu.cn

Abstract

Due to web technologies, many software systems, from backbones to front ends, are migrating
from standalone applications to cooperative ones. This transform impacts not only the way
software works, but also how it looks, or its user interface with human operators. This article
proposes DHCI, a framework of HCI, which generalizes a collection of programming and user
interfaces in distributed environment. It may be adopted as the top-level interface in distributed
software applications that call for extensive interactions with its users. The implementation is
illustrated in two software systems we have been working at. One is called WAF, which is a multi-
agent system (MAS) based application. The other is called NPL, which is the networking and
scripting language used in our 3D computer game engine. They represent respectively two
application domains of DHCI. The first is interface software for web users. The second is software
development environment for programmers.

1 Introduction

Emerging web technologies such as XML, Web services are raising new opportunities in the
virtual world. Many software systems, from backbones to front ends, are migrating from
standalone applications to cooperative ones. This transform leads to a fully dynamic and
distributed environment in the software world. Fixed client/Server architecture might still be a
mainstream choice in the next couple of years. However, more cooperative styles of computing
will rise and impact not only the way software works, but also how it looks, or its user interface
with human operators. Recently with multiple clients and multiple severs architecture, the
functionality of end-user applications is significantly extended. However, HCI concepts used in
these applications and their development environment remain mostly unchanged. The lack of
distributed HCI concept has, to some extent, limited the creativity of software developers and
increased the difficulty of distributed application design.

This article proposes DHCI, a framework of HCI, which generalizes a collection of programming
and user interfaces in distributed environment. It may be adopted as the top-level interface in
distributed software applications that call for extensive interactions with its users. The
implementation is illustrated in two software systems we have been working at. One is called
WAF, which is a multi-agent system (MAS) based application. The other is called NPL, which is
the networking and scripting language used in our 3D computer game engine. They represent
respectively two application domains of DHCI. The first is interface software for web users. The
second is software development environment for programmers.

Section 1.1 and 1.2 gives the background of the two representative applications, with an emphasis
on their interface requirement. Section 2 proposes DHCI in formal terms. Section 3, 4 shows how

mailto:lixizhi@zju.edu.cn

DHCI are being applied to the two sample applications. Section 5 concludes the paper. Readers
may skip section 2 after finishing reading the introduction part, and start either from section 3 or 4,
then going back to section 2 for some references.

1.1 Background of WAF

Our first sample application is called web agent framework (Li & He, 2004) or WAF, which is a
web-alike topology (Benyon, 2001) multi-agent system application. It aims to create a visible
virtual human relationship network on the Internet. Using agent to represent human beings and
provide information to other visitors (including agent) is not a new idea. However, current
implementations lack a flexible user interface to convince users that agents are active entities that
exist on the network with them. This is due to static user interfaces and conventional object
manipulation techniques adopted.

(a) (b)

Figure 1: (a) users leave an off-line tree graph of visited agents and artifacts as they navigate
(b) several map files and user’s interaction with agents or data in these graph files.

In WAF, user’s navigation path can be visualized in an off-line tree graph (See Figure 1.a). The
client explorer of WAF will remember each visited agent as well as any downloaded artifacts such
as a piece of news or a group of other related agents (e.g. friend agents). It allows reconfiguration
of the topology of all these intelligent agents as well as data resources on the client side and save
them into local map files. Agents and information in these map files can be updated automatically
when they are reactivated or re-opened from the history records kept in the local memory
pool(database); they can later be used as the starting point of a new navigation or just provide a
group of related web services to its user. See Figure 1.b.

In WAF, although most computing occurs at the place where agents are actually situated, users
(including other agents) can customize foreign agent references in different activation maps on
their local environment. In our everyday life, we accept the existence of an object only through
different perspectives and from many situations in which it used to act. Likewise, in order to let
people accept the existence of an agent, the user is allowed to create multiple situations in which
the same agent is referenced. In section 3, we will describe it in DHCI terms. One may go to that
section directly for further reading.

1.2 Background of NPL

The second application is called NPL, which is the networking and scripting language used in our
3D computer game engine. It is reasonable to believe that the future user interface of the web will
go 3D or at least the portion, which might be called networked virtual environment (Singhal &
Zyda, 1999), will become a 3D space of interconnected virtual reality worlds on the web.
Communities like Web3D is exploiting a new possibility of expressing networked virtual
environment that is as distributed as web pages and more interactive than just hyperlinks. One of
the biggest parties that are pushing this trend has been in the game industrial.

At Zhejiang University, we are developing a distributed 3D game called Parallel World. We call it
distributed game, because each player may have its own game world hosted like a personal
website on its PC or other web severs. As a result, a complex game world plot may physically
reside on several big servers, whereas a simple game world may be managed by a player on its
own PC. Game worlds, big or small, are treated equally in the gaming space. Players might hop
from one world to another and complete game tasks spanning several game worlds.

To develop its enabling game engine and using the engine to construct game world logic is a
challenging task. Metaphorically speaking, a game engine can be regarded as a local viewport and
simulation space for a usually much larger 3D virtual reality space on the web and local disk.
Globally referenced art resources and a separate (usually simplified) language system constitute a
high-level game programming interface on top of the game engine itself. In some aspects, a game
engine can be compared to a web browser, where multimedia files and HTML/XML constitute its
high-level programming interface.

An important design issue of the game engine and its high-level programming interface is that,
unlike most fixed and pre-compiled distributed applications, distributed game worlds are subject
to constant content updates and even deployment site reconfigurations. In our viewpoint, the next
generation high-level language may be programmed in a uniform manner independent of its
networked runtime environments; the resulting program code will be compiled automatically at
their deployment sites; its runtime environments will ensure that the same program will function
in the same way under arbitrary deployment scheme; and its development environment may allow
visualized design of parallel code and its deployment configurations. In other words, the
compiling and deployment process may both be carried out in a distributed manner and
environment; whereas the source code is ignorant of this process. This calls for a new language
dedicated to this task and a new human-computer interface (HCI) adopted by both its runtimes and
the programming interface.

With this vision, we have proposed a neural network based programming paradigm called Neural
Parallel Language or NPL to be used in our game engine. It mimics the functioning of neural
networks and codes the logics of distributed game world into files that could be deployed to
arbitrary runtime locations on the network. Both its programming interface and the game engine
platform allows for arbitrary number of visualization and interaction clients running on the huge
networked gaming space. The result is that thousands of players simultaneously play in a
networked 3D environment which may be hosted on many game servers and even the players’
own PCs. In (Li, 2004), I have outlined the basic ideas on its framework design. In section 4, we
will describe it in DHCI terms. One may go to that section directly for further reading.

2 DHCI Reference

In previous sections, we have shortly described two application domains of DHCI. Although their
HCI differs greatly in both functions and appearance, there is a set of HCI concepts that is
common to all of them. These concepts are described in abstract terms in this section. We hope
that DHCI could be used as some HCI template, which (1) software designers can use to define
similar applications at an early stage and (2) programmers can use to define the high-level
programming interface for similar distributed applications.

2.1 Related works

The work contains a major improvement and extension of the short paper (Li & He, 2004). The
related works fall into two categories: one at design time, the other at development time.

For the design time HCI, some related works are dedicated to the requirement, analysis and design
phase of a distributed application, such as some agent development platform (Bauer, 2001) and
UML extensions (like AUML (Odell et al., 2000)). They are focusing on the internal hierarchy of
an agent framework. There are also tools and interface models to provide assistance to interface
developers (Puerta, 1998). Many methodologies have been developed to support the design phase
of Multi-Agent Systems (MAS). Among them are AUML, Gaia and MAS-CommonKADS. These
methodologies offer a set of diagrams to help conceptualize and represent the system under
development. And there are also tools and network computer games that automatically generate
the presence of agent networks over the Internet. Our purposed DHCI is not a concrete
implementation to the above helper software, nor is it a substitute for these proposed visual aid
tools; instead, we aim to suggest to application developers that much work can be refined and new
important functionalities may be needed in future software applications. In the given samples, we
demonstrate through concrete applications how these new functionalities are being used and
realized.

For the development time HCI issues, DHCI aims to provide a solution to distributed visualization
task. We realize that the major impediment to the wide use of distributed systems is the lack of
easy-to-use visualization framework. One of its primary reasons is the difficulty of acquiring the
information necessary to drive the visual display. A fairly substantial amount of work has been
done in the visualization of parallel and distributed programs. However, most of them are in the
domain of scientific computation and performance analysis, such as applications built with parallel
virtual machine or PVM and the ParaGraph visualization lib (Topol et al., 1995). DHCI promotes
the use of distributed computing and visualization for more interactive and widely applicable
applications such as web agent framework and distributed 3D computer games. The HCI related
programming interface is different from its previous works. Section 2.2.2 gives the details.

2.2 DHCI interface object

The following top-level interface objects are defined in DHCI: DNode, DNodeInstance,
DNodeReference, ActivationMap, History, Owner and Runtime. In the following subsections,
details of DHCI terms are given with explanations followed. For usage information, please refer to
section 3 and 4.

2.2.1 DNode object

DNode := <∑, L, UIFunc, In, Out, URI>
∑:= alphabet in the DNode’s top-level communication language L.
L:= the DNode’s internal and communication languages. For formulation simplicity, we assume
they are the same language L (). L should contain the function activate *⊂ ∑

activate:=< UIReceivers, DNodeInstance::address, message >, it is an asynchronous
function which will send a message to a DNodeInstance object. It returns immediately.

UIFunc:= <UIReceivers, func_name, parameters, …>, the set of definitions to all user interface
functions that might appear in L. In additional to function name (func_name) and parameters,
every UIFunc has an implicit parameter called UIReceivers.

UIReceivers:={<Runtime::Address, {Owner::key}>}, a list of runtime addresses and keys.
It contains information of all runtimes who will receive the UIFunc.

In:= All possible input, which can be further defined as a sub language in L
Out := All possible output, which can be further defined as a sub language in L
URI := A global resource identifier where the DNode is defined

DNode is an entity prototype defined on the network. When developing distributed applications, it
is good practice to define all DNode prototypes beforehand. In most cases, a single DNode
prototype is used throughout an application. Only one asynchronous function for sending
messages is defined in L; synchronous functions are called services in DHCI and are defined in
DNodeInstance. The usage of UIFunc is described in details in the DNodeInstance section.

2.2.2 DNodeInstance

DNodeInstance := < DNode, address, program, UIReceivers, lock>
address := <namespace, local path>, a global resource identifier.
program:=<state, code, service>, a program code written in DNode::L.

state := <PublicState, ProtectedState>
PublicState: = public data or state that is accessible by other DNodeInstance. Public
data may be a variable defined in L, text and multimedia files in database, etc. They
have unique names within a DNodeInstance.
ProtectedState:= protected data are accessible within current DNodeInstance. They
could be exposed through services (see below) for other DNodeInstance to access.

code:= source code of the program, which may contain asynchronous activate(…) calls to
other DNodeInstance.
service:= {<name, IOPairs>}, where IOPairs In Out⊆ × AND

(,) { 1, 2 [(1,) (2,)]}i o IOPairs s s state s i s o∀ ∈ ∃ ∈ ∆ = , a collection of named synchronous
functions written in L. The caller will be stalled to wait for the service function to return.

∆ := A transition function from ()state In× to ()state Out×
UIReceivers:= DNode::UIReceivers, the current UI receiver list.
lock := {<name, {keys}>} require keys to open them. A program can perform authorizations by
accessing the lock content of its associated DNodeInstance.

DNodeInstance is an abstraction for atomic distributed entities on the web. It is instantiated from a
DNode prototype. Two major problems confronting most distributed applications are (1) data
sharing (2) data visualization. The first problem can be solved by extending the addressing space
from local to global and passing any certification information along with data access requests.
However, the second problem is not trivial and does not have a universal solution as the first one.
One of the design goals in DHCI is centered on the solution to the second problem. See below.

The solution to distributed visualization

One of the big pictures for parallel and distributed computing is to regard all networked computing
resources as possessed by one big super computer. However, most applications running on such
platforms have only one universal display or one fixed view distribution architecture such as a
server providing visualizations for many view clients. It is difficult to schedule a visualization
architecture where (1) each distributed atomic program tells how data should be displayed; (2)
each client has their own view of the entire distributed computing space (i.e. web) and their own
interactions with end users. But such visualization architecture is preferred in many applications
and we implemented it in DHCI. For instance, in web agent framework, each agent defines how
the result of a request should be displayed on the callers’ screen. One request to an agent may
activate a chain of other agents, each of which might have something to display for the original
caller in additional to data processing request from the last agent in the chain. For another example
in the Parallel World game, a player might simultaneously interact with several objects in a game
scene. Their events will activate the corresponding scripts on several remote servers, which in turn
may further activate other scripts on other severs. All scripts along the activation routes may issue
GUI commands to change the 3D view on the original player’s computer. A more concrete
example is that one player is collided with another player in a game scene. What happens to the
first player’s runtime environment? One possible computing scenario behind the scene is stated
below. The first player’s runtime sends a message to the terrain host server, whose scripts will
generate GUI commands to update player locations in the caller’s view. Meanwhile, another
message is sent to the second player’s server. This second server might decide to generate a GUI
command to display some text on the first player’s view. The aggregated view of the first player is
that the positions of all visible players are updated and that a piece of text is displayed in a popup
dialog box. From the first player’s viewpoint, the computing occurs on remote servers; GUI
commands are issued in remote scripts, but interpreted and executed in its local view platform.

By contrast, fixed visualization architecture transmits data, instead of visualization commands. Its
approach may undermine the independence of distributed atomic entities. E.g. any change made to
the entity’s deployment scheme will also cause the transmitted data to be altered. However, with
visualization commands embedded in each distributed entity, programmers no longer need to
worry about to whom visualization data should be sent and a deployment scheme change (e.g.
deploying all entities to two web servers, instead of one) will not affect the original source code.
Another advantage is that it ensures that the minimum data set that is absolutely required by the
data consumer in order to perform the required rendering function is transmitted.

One problem remains that how the same DNodeIntance::program can serve different view clients
simultaneously. This is done by the trick of an invisible parameter DNode::UIReceivers, which is
passed and modified from one DNodeInstance to another according to the following rules.

• When a DNodeInstance is activated by a Runtime, the network address of this Runtime
is inserted in the DNodeInstance’s current UIReceivers list.

• When a DNodeInstance is activated by another DNodeInstance, UIReceivers of the
caller is merged in to that of the receiver’s.

• When a DNodeInstance::program is finished, its UIReceivers list is cleared.
• All UI functions inside DNodeInstance::program shares the same UIReceivers with the

DNodeInstance, unless explicitly modified by the DNodeInstance::program from inside.
• A DNodeInstance::program may modify its current UIReceivers list from inside.
• All executed UI functions inside DNodeInstance::program will be batched at the end of

the simulation timestamp of the local Runtime and sent to all Runtimes that appeared
in the function’s UIReceivers parameter.

UIReceivers is attached to every UI functions (DNode::UIFunc) and every DNode::L::activate(…)
call. For a DNodeIntance::program, its current UIReceivers can be modified from inside the
program, such as adding a filter to prohibit UI functions being sent to certain receiver Runtimes or
binding one receiver with another. In most cases, though, a DNodeIntance::program does not need
to care about UIReceivers.

2.2.3 DNodeReference

DNodeReference := <DNodeInstance, visibility>
visibility := A customized appearance of DNodeInstance that is used for display
DNodeReference

It is a reference of DNodeInstance, which is used in off-line presentation in an activation map.

2.2.4 ActivationMap

ActivationMap := <name, nodes, edges>
nodes := {DNodeReference}
edges := {< in , out>}
in := DNodeReference
out := DNodeReference

It is a collection of DNodeReferences organized in a directed graph, which represents a user
configurable activation topology of DNodeReferences. In DNodeInstance::program, each
DNodeInstance may define their own activation topology using the DNode::L::activate(…) call.
However, this topology is specified by each distributed DNodeInstance and can not be modified
by external unauthorized users. To remove this restriction, ActivationMap provides a central place
for any user to create additional activation map of DNodeInstances.

2.2.5 History

History := {< keywords, object, data>}
keywords := {time | name | address | …}
object := DNodeInstance | ActivationMap

It is a historical record of all the above DHCI objects. The history object is meant to provide
offline browsing capabilities for the above DHCI objects.

2.2.6 Owner

Owner := <UserID, keys, privileges, {DNodeInstance}>
keys := {key}
privileges := {create | delete | modify | …}

It is an authorized entity which owns a collection of DNodeInstance.

2.2.7 Runtime

Runtime := <address, {ActivationMap}, {Owner}>
It is the computing, simulation and visualization platform located on a single workstation.

3 WAF illustration

In section 1.1, I have introduced WAF. This section shows how its user and programming
interface is mapped to DHCI terms, which are written in parenthesis following their WAF
counterparts. In WAF, several agents may be created from the same agent prototype (DNode),
which must be made available in the form of a global Internet asset. Because most agent platforms
choose to use one of the agent communication languages or ACL and RDF ontology or XML
schema in the form of XML encoding, an agent prototype can be defined in XML files on the
Internet. An agent instance (DNodeInstance) is usually implemented as web services. A set of
high-level UI functions (DNode::UIFunc, Figure 2.c, f) are defined, such as showing message box,
expanding current map node, displaying popup menu, etc. The web service code
(DNodeInstance::Program) may call other agent instance and send output messages containing UI
functions to the receiving client browsers (Runtimes).

(a)

(b)

(c)

public message | fetch friend | [Name

of the agent] | zoom out | zoom in
(d)

 (e) (f) (g)

Figure 2: (a) register an owner (b) a downloaded agent reference (c) interact with agent and UI
function feedbacks in the form of popup menu (d) a graphical presentation of agent in client

browser (e) offline browsing in history (f) UI function feedbacks in the form of pre-defined dialog
box (g) other miscellaneous functions provided by the client browsers

In WAF, after registering on an agent provider’s website, users are given a master account (Owner,
Figure 2.a) and the address of its agent. Once an agent instance has been downloaded to an agent
map file (ActivationMap) of a browser, it becomes a reference of this agent on the map (Figure 2.b,
d). An agent reference (DNodeReference) is a separate local copy of the web agent. Disk files or a
light-weight database system is used as the medium for storing agent map files and agent
references. Figure 1.e,g shows some ways in WAF to retrieve off-line objects from the history
such as by selecting disk files, entering query strings or date (browsing objects from History).
Agent references in a map file can also be edited or annotated (Figure 1) and their topologies in
map files can be reconfigured such as by drag and drop operations (reconfiguration in
ActivationMap, Figure 1.b).

4 NPL illustration

In section 1.2, I have introduced NPL. This section shows how its user and programming interface
is mapped to DHCI terms, which are written in parenthesis following their NPL counterparts.

(a)

(b)

(c)

Figure 3: (a) updating players’ positions and ordering waving animation from remote scripts
(b) NPL runtime and neuron source files (c) a simple remote neuron script demo

Neural parallel language or NPL is the high-level programming language and runtime
environment in our distributed game engine. A program written in NPL consists of a collection of
independent files called neuron files (DNodeInstance), which can be deployed to arbitrary NPL
runtimes (Runtime) on the network. A neuron file may activate other neuron files during its own

activation through one-directional asynchronous message passing calls (Figure 3.b). Each NPL
runtime may be standalone or be tightly integrated with a game engine (also Runtime). A
collection of UI functions (DNode::UIFunc) are defined in NPL. These UI functions cover a
complete set of game content controllers, such as loading game scene objects, displaying dialog
boxes, playing sounds, updating player positions, animating characters, changing camera mode,
etc. Some of these scene objects are associated with specific neuron-file address (these special
scene objects are DNodeReference) at their creation time, so that events in the locally simulated
game world will activate corresponding neuron files. Human player can built its own game world
(reconfigure the ActivationMap) through the game console, such as building houses, planting trees,
adding a door portal to someone else’s game world, etc. Any visited game worlds can be preserved
on the human player’s local game server for offline browsing (history). An activation chain of
neuron files usually originates from an in-game event, such as an internal timer or a 3D/2D
collision event in the local game world (Runtime). The network address (UIReceivers) of this
triggering runtime is passed through the activation chain as described in section 2.2.2. Hence, all
UI function calls in the chain of files can know their receiving runtimes. This logic will allow the
same network of NPL source files to serve any number of game clients (Figure 3.c).

5 Conclusion

We proposed a DHCI framework for economic use of distributed resources. New computing
frameworks such as multi-agent system, distributed neural network based computing require new
HCI framework designed for their efficient manipulation and visualization. The proposed
framework is summarized from two representative applications we have previously implemented.
We hope it could provide some useful insights and HCI patterns in the design of similar
distributed applications.

References

Bauer., B. “UML Class Diagrams Revisited in the Context of Agent-Based Systems.” In the econd

International Workshop on Agent-Oriented Software Engineering (AOSE-2001), Montreal,
Canada, May 28- June 01. 2001. pp 1-8.

David Benyon, “The new HCI? Navigation of information space,” Elsevier. Knowledge-Based
System (2001).

Li, Xizhi, “Using Neural Parallel Language in Distributed Game World Composing,” in Conf.
Proc. IEEE Distributed Framework of Multimedia Applications. 2005.

Li, Xizhi and He, Qinming. "WAF: an Interface Web Agent Framework." IJIT. International
Conference on Information Technology 2004.

Odell., J., Van Dyke Parunak., H., and Bauer., Bernhard. “Extending UML for Agents.”
Proceedings of the Agent-Oriented Information Systems Workshop at the 17th National
Conference on Artificial Intelligence, Gerd Wagner, Yves Lesperance and Eric Yu eds.,
Austin, Tx, pp 3-17, AOIS Workshop at AAAI 2000.

Puerta, A.R. “State-of-the-Art in Intelligent User Interfaces” Knowledge-Based Systems, 10(5),
1998, pp. 263-264.

Singhal, S., and Zyda, M. (1999). Networked Virtual Environments: Design and Implementation,
ACM Press.

Topol, B. et al., “Integrating visualization support into distributed computing systems.”
Distributed Computing Systems, 1995., Proceedings of the 15th International Conference on ,
30 May-2 June 1995 Pages:19 – 26

	Introduction
	Background of WAF
	Background of NPL

	DHCI Reference
	Related works
	DHCI interface object
	DNode object
	DNodeInstance
	DNodeReference
	ActivationMap
	History
	Owner
	Runtime

	WAF illustration
	NPL illustration
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

