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Preface 

This book is about the design and implementation of a distributed 3D computer game engine, 
called ParaEngine. Game engines encompass the richest and most advanced technologies in 
computer science, such as 3D visualization, physics simulation, scripting, networking and AI 
etc. The composition of these technologies is diverse and constantly evolving. Despite of the 
relatively large number of game engine implementations, there are no two of them that are 
alike. This book allows readers to see deep into a unique and commercial quality game engine. 
Not only does it cover the common and today’s popular architectures adopted by many game 
engines, but it also shows a proven valid framework of a complete game engine 
implementation.  

Many general game development books cover game engine implementation to some extent, 
but not specific enough to cover details in real world situations, i.e. given a fundamental 
algorithm or method, how to design efficient software architecture to handle gigabytes of 
game data at real time. On the other hand, many specialized books cover greater details of a 
certain aspect of game engine, but novices still need to make risky choices as for which 
method and how to apply it in their own game engine implementations.   

 Our book sacrifices some of the completeness on the narration of various game 
technologies, but saves the space for extra explanation to allow readers to grasp the big idea 
of each one, examine and evaluate a concrete implementation which have been proven valid 
in our own game engine. To complement it, most chapters of this book come with a 
discussion and comparison of various other algorithms not adopted in our implementation, yet 
can be very useful in different situations. Also, most chapters end with an outlook, which 
might be a starting point for the next generation engine programmers.  

Who Needs This Book 
Anyone who wants to understand computer game engine can read this book, because each 
chapter begins with a carefully written narrative section. It gives the background and 
methodologies of the chapter subject in plain language and goes into as much depth as 
possible without much math and source code. Programmers will benefit most from this book, 
because this is one of the few books that cover commercial-quality game engine to the code 
level. Researchers and students who want to apply their innovative ideas in the game 
domain will find the right spot by reading the outlook section at the end of most chapters.  We 
also hope this book could be used as an educational book teaching game technologies. The 
author started his first game engine on a university game course without a good book of 
teaching how. Chapter 2 of the book is thus designed to teach zealous students to build their 
own game engine from scratch in a few days and to extend its functionalities in a spiral 
development path. However, a complete game engine usually took years and great patience to 
build.  

Assumptions for Programmers 
The game engine implemented in this book uses DirectX9.0c and C++. The book does not 
cover DirectX and 3D math fundamentals, because these things are well documented in 
DirectX SDK and many places on the Internet. Neither does it require novice engine 
programmers to know DirectX 3D API and 3D math very well when they read this book. It is 
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only necessary for them to learn such things when they are doing the actual coding. In fact, 
even if you think you know the math and DirectX API for a certain program module, you 
should always hesitate on whether you reinvent the code yourself or doing some research first 
as directed in this book.  Using commercial third-party modules usually saves time and 
improves quality; and sometimes, even a solution based on open source project is better than 
writing your own ones. What we are trying to imply to you is that the cost of writing 
everything from scratch is really high and that some stable game engine modules may be 
optimized using assembly language six months before their release. 

Writing Style 
The text in this book is written as concise as possible, which give readers the holistic idea of a 
computer game engine. The code and logics in this book, however, try to give programmers 
the concrete picture of how a game engine is written. An engine programmer still need to do 
its own research as directed in the book in order to implement, but he or she should feel 
confident enough to apply its knowledge.  

About This Book 
The book is divided into two volumes. Volume I covers mainly the client side technologies of 
a computer game engine; volume II covers network related technologies and the cognitive 
simulation framework of ParaEngine realized through a special language system.  Volume I is 
fit for the design and implementation of a general game engine. Here is a summary of what 
we covered in volume I of the book. 

Chapter 1.  Game Engine Introduction 

After a short introduction to game engine, it dissects game engine architecture, explains the 
functions of the different modules of a computer game engine. At the end, it will propose 
ParaEngine architecture, which will be examined in greater details by chapters 4-19.  

Chapter 2.  Spiral Development Path 

It gives a possible game engine development path.  It begins at the spiral center by building 
up the skeleton of a basic game engine, and then gives the sequence of adding more 
functionalities and modules to the primitive game engine. This chapter is very useful for 
people building their own game engine from scratch.  In the shortest time possible, it guides 
you to establish a serious game engine development platform for later extension. 

Chapter 3.  Files and File formats 

To programmers, a software system can be quickly demystified by examine its protocols 
and file formats. Even for programmers without former game programming experience, it is 
quite helpful to glance over all file formats used by a game engine. We not only covers the 
file formats, but also tell you the average file size, average number of each file types 
processed by a moderate 3D game, and  file distributions. Novice programmers and designers 
can prepare their minds and start reflecting on how large volumes of game data can be 
managed efficiently at real time.  This is a special and independent chapter that we designed 
to get you very close to a complete computer game engine in a bottom up manner before you 
even know their implementations.   

Chapter 4 – 19. <Content chapters> 
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Each of the content chapters writes about a specific module of ParaEngine in details and is 
fairly independent of each other. Each chapter is approximately comprised of the following 
sections. 

1. Foundation:  It gives, in plain language, the general idea of the module, basic 
principles, algorithms and possible solutions, etc. This section usually has sub-sections 
for sub-systems of the module.  

2. Architecture:  It only gives the one architecture which is used in ParaEngine, yet in 
more details. 

3. Code and Performance Analysis: It details the architecture section by code or code 
templates. It also points out the performance critical spots in the code and how to 
implement them efficiently.  

4. Outlooks: It discusses the state of the art of the technology, how newly developed 
technologies might affect the current implementation of the system and the outlook. It 
also directs researchers and practitioners to useful resources on the web. 

Appendix 

We suggest readers read Appendix B to get a quick feel of what a game engine is, before 
diving into this book.  

Using Code in This Book 
In general, you can use the code in this book in your programs and documentation. You do 

not need to contact us for permission unless you are reproducing a significant portion of the 
code. 

We appreciate attribution. An attribution usually includes the author, title, publisher and 
ISBN. For example: “Xizhi, Li. Design and implementation of distributed game engine. ISBN 
XXX. ” 

How to Contact Us 
Mail address Room A811, Shenzhen Tech-Innovation International, 

Shenzhen,518057, P. R. China 

Author’s Email lixizhi@yeah.net 

Author’s website www.lixizhi.net  

To English Version Readers 
When you are reading the English version of this book, you may find that it is not written 

by a native English speaker. Well, I do hope readers can focus on the content. Yet I apologize 
for any inconvenience of reading, due to the language. I am the developer of ParaEngine. At 
the time of writing, I am also the project manager of our game studio. I wrote this book 
mostly in my spare time, with great patience, using the English language, which is foreign to 
me. But I find that English is also the only language for this book to be finished in time, 
because all my former programming notes and reference materials of ParaEngine are in 
English.  

mailto:lixizhi@yeah.net
http://www.lixizhi.net/
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Chapter 1 
Game Engine Introduction 

Game engine is an all encompassing subject in computer science. In the narrow sense, a game 
engine is a fairly general game development platform which can be used to build many games. 
A modern game engine can be regarded as a virtual reality framework running not only on a 
standalone computer, but also on a computer network. It interacts with human users with 
multimedia input and output, simulates the networked virtual environment with laws similar 
to the real world, and animates characters which exhibit approaching human-level intelligence. 
Beneath the interface, a game engine does almost everything that a computer is capable to do 
and it must do it in the fastest way possible. Game technology represents the richest virtual 
reality implementation that present day hardware could afford at real time.  

In recent years, game engine related technology has drawn increasing academic attention 
from a wide range of research areas. People come to realize that game engine may naturally 
evolve in to the most widely used virtual reality platform in the future. The topic of the book 
is on the design and implementation of a distributed computer game engine called ParaEngine. 
ParaEngine is a commercial quality game engine aiming to bring interactive networked virtual 
environment to the Internet through game technologies. In ParaEngine, game worlds and 
logics on individual computers can be linked together like web pages to form an interactive 
and extensible gaming environment.  

In a computer game engine, there are tremendous number of wisdoms and choices in 
putting all its components into one piece of working software. During the past years, new 
algorithms and hardware evolutions have made several big impacts on the integration of game 
technologies in a computer game engine. It is safe to predict that game technology will 
continue to be a rapidly reforming area in the future.  

1.1 Game Engine Technology and Related Research 
Since early 1990s, game engine has evolved to become a standard platform for constructing 
and running 3D virtual game worlds of high complexity and interactivity. In recent years, 
game engine research has drawn increasing academic attention to it, not only because it is 
highly demanding by quick industrial forces, but also because it offers mature and extensible 
platform support for a wide range of researches in computer science and engineering. These 
includes computer graphics, autonomous animations, web avatars, artificial intelligence, 
virtual reality (VR) and augmented reality (AR), networked VR, stereo vision, HCI, web 3D 
technologies, multi-agent framework, distributed computing and simulation, education and 
military training, robotics, etc.  

The term "game engine" arose in the mid-1990s, especially in connection with 3D games 
such as first-person shooters (FPS). Such was the popularity of id Software's Doom and 
Quake games that rather than work from scratch, other developers licensed the core portions 
of the software and designed their own graphics, characters, weapons and levels—the "game 
content" or "game assets." Later games, such as Doom 3 and Epic's Unreal were designed 
with this approach in mind, with the engine and content developed separately. The continued 
refinement of game engines has allowed a strong separation between rendering, scripting, 
artwork, and level design. Modern game engines are some of the most complex applications 
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written, frequently featuring dozens of finely tuned systems interacting to ensure a finely 
controlled user experience.  

1.1.1 A Glance at Computer Game Engine 
Game engine is a very broad subject. The part that deals with graphic storage and displaying 
is often called 3D engine or rendering engine. Rendering engine is usually the core 
component in a present day game engine; but a game engine usually includes support for 
many more aspects of a game's architecture than just the 3D rendering. Some part of game 
engine may be implemented by “middleware”. Middleware developers attempt to "pre-invent 
the wheel" by developing robust software suites which include many elements a game 
developer may need to build a game. Most middleware solutions provide facilities that ease 
development, such as graphics, sound, physics, biped animation, networking and AI functions. 
E.g. physics engines such as Novodex1 and Havok2 are commonly used by top commercial 
game engines to construct physically convincing games. In the viewpoint of a game 
development corporation, integrating middleware in their game engine is usually called 
outsourcing3.  

The continued refinement of game engines has allowed a strong separation between 
rendering, scripting, artwork, and level design. It is now common (as of 2006), for example, 
for a typical game development team to be composed of artists and programmers in an 80/20 
ratio. Hence, game engine should also include a complete suite of virtual world constructing 
tools, which are used mostly by artists. For example, 3D models, key framed animations, 
physical specification of game objects, etc are usually made by professional tools such as 
3DsMax and Maya, and then exported to engine digestible file format by exporters provided 
by the game engine; cinematic, game levels, etc may also be made in a similar way, whereas 
some game engine provides more specialized tools, such as visual script editor, audio editor, 
model editor, level editor, et., which allow artists and level designers to compose game scenes 
on the fly (i.e. graphics attained at design time appear exactly as in the final game). For 
example, Quake series level editing tools are popular among hobbyists and also used 
optionally by some open source game engines4. 

Table 1.1 shows a quick a quick jot-down list of game engine technologies.  

Table 1.1 A quick jot-down list of game engine technologies 

Category Items 

Graphics scene hierarchy, skinning, shadow / lighting model, particle systems, 
shader model / material system / associated tools, vertex and skeletal 
animation, alpha/texture sorting, terrain, clipping/culling/occlusion, frame 
buffer post-processing effects,  split-screen support, mirrors/reflection, 

                                                      
1 Novodex physics engine, http://www.ageia.com/novodex.html  

2 Havok solutions, http://www.havok.com  

3 Outsourcing Reality: Integrating a Commercial Physics Engine, Game Developer Magazine, 2002. 

4 3D Engines Database, http://www.devmaster.net/engines/  
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procedural geometry, 2D GUI (buttons, text rendering/font issues, 
scrolling windows, etc), level of detail, projected textures, … 

Resource 
management 

Dynamic loading, resource lifetimes/garbage collection, streaming 
resource scheduling, rendering device change management, file access 
(virtual files)…  

sound/music 3D, 2D, looping, looping sub range, effects, … 

in-game UI also related to graphics and scripting. 

I/O key remapping, force feedback (haptic devices) 

time management frame rate control: time synchronizations with various engine modules 

Scripting Lua/python/?, saving and loading game state, security, performance, 
profiling, compiler and debugging, in-game cinematic, … 

Tools level editor, terrain editor, particle system editor, model/animation 
viewers  

trigger system tool, cinematic tool, MAX plug-ins – exporter, … 

Console In game: debugging, in-game editor,  

recording/playback: frame-based, time-based 

compatibility: cross-platform compatibility, graphic device support 

Networking distributed client/server, single client/server, peer-to-peer, 
security/hacking issues, package misordering, time synchronization, 
delay, bandwidth usage, error handling … 

Physics stable physics integration, frame rate control, outsourcing physics 
engine?, collision detection (continuous or discrete) , collision response 
(approximation or impulse-based), integration with key framed 
animation, line of sight/ray queries, … 

Animation inverse kinematics, key framed animation, motion warping/blending,  

AI fuzzy logic, machine learning, state machines, path-finding, tools 
(scripting)… 

General memory management, exception handling, localization, enhancing 
concurrency/multi-threading, … 

The four major modules in game engine are 3D rendering (graphics), scripting, physics 
simulation and networking, as shown in bold text in the table. This framework design as well 
as individual component implementations decides the general type of games that could be 
composed by it. 

1.1.2 Games as a Driving Force 
The study of a game engine framework is now gaining increasing popularity among the 
academic community for at least the following reasons.  
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- The knowledge of a computer game engine will greatly help the design and 
implementation of a multimedia application in the future, since user interface 
application will become more and more playable and user-friendly like computer 
games. Moreover, a game engine framework has many good design patterns and 
common libraries which developers can reuse.  

- It is an area of research where software and hardware developers work closely 
together. In other words, it has many hardware peripherals which it depends on, such 
as the network server facilities, the haptic devices, the stereo glasses, the 
graphics/physics acceleration cards, and other parallel architecture that increases the 
computing power of a modern personal computer. Most hardware improvements made 
could immediately be put to use in a computer game engine. 

- It is industrial demanding. As people have more time and less space, they turn to the 
virtual world for resorts and accomplishment. The biggest benefit that computers 
bring to mankind is likely to be virtual reality. More and more real world services will 
be built in to future virtual reality framework. Hence, the mastery of game engine 
tools and framework will be as important in the future as building web pages today. 

- Games are the driving force to push computer technologies and to bring the Internet 
from 2D to 3D. Unlike other industrials, games and game technologies are exposed to 
the largest number of users and it is especially favored by young people. Both playing 
and developing games are community based activities that last for a long time. All 
these attributes make game engine a promising research area to push computer 
technologies in a variety of fields.  

- Game engine is a highly interdisciplinary study. It evaluates the performances and 
effects of several candidate approaches in a certain research area, and designs the 
combinations of the best choices from many areas of study, which in turn will help 
refining the approaches in separate disciplines.  

- Game technologies are being applied to a number of other fields, such as remote 
education, digital learning, augmented reality guidance system, military training, 
medical treatment, vehicle training, scientific simulation and monitoring, and 
animations in movies, etc.  

- Games are also a driving force for a variety of other serious research areas, such as 
parallel and concurrent computing and programming, artificial neural networks, 
autonomous character animations, human computer interface, human cognitions,  
robotics, etc. 

Finally,“Computer Science alone was not sufficient to build our future modeling and 
simulation systems.” (Zyda). Game content developers must acquire other cross-disciplinary 
skills to build well-qualified virtual environment. Game development is both technology and 
art intensive.  The 2004 game report5 provides timely analysis and actionable insights into 
emerging game technologies and their potential impacts on existing and new technical 
education curricula. 

                                                      
5 Jim Brodie Brazell, Digital Games: A Technology Forecast, Texas State Technical College, 2004. 
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1.2 Introduction to Distributed Computer Game Engine 
 “Distributed Game Engine is a game engine framework which allows virtual world content 
and game world logics to be distributed on a large scale and extensible computer network, 
such as the Internet.” 

ParaEngine is a distributed computer game engine. But it does not complicate the issue of 
introducing game engine technologies, because it shares all the common features of a general 
computer game engine and have more flexible and extensible architecture design. 

The game genre that distributed game engine advocates is open games, of which the 
gaming environment extends as far as the network could reach. For example, initially a 
publisher may host a 3D game world on a small cluster of servers on the Internet; as more 
users are playing its game, the publisher may frequently increase the size of the game world 
and the scale of game servers; meantime, players may also help to extend the gaming 
environment with its own computers. In the future, games will be as open as the Internet; its 
supporting framework may be called distributed game engine.  

Plainly speaking, if we compare web pages to 3D game worlds, hyperlinks and services in 
web pages to active objects in 3D game worlds, and web browsers and client/server side 
runtime environments to computer game engines, we will obtain the simplified picture of 
distributed computer games. It is likely that one day the entire Internet might be inside one 
huge virtual reality game world.  

1.3 ParaEngine Overview 
This section shows one possible division of game engine functionalities into fairly 
independent program modules. It also shows the game loop that calls these modules.  
Programmers who are new to engine programming need not fear about the number of 
modules presented here, since we will guide you in a spiral development path to build a 
serious game engine from the very beginning.  

1.3.1 Foundation Modules 
The core of ParaEngine is comprised of the following modules.  

- Asset Manager: It manages all kinds of game resources and device objects used in the 
game engine, such as textures, geometries, sounds, effects, buffers, etc. As a general rule, 
the manager provides a unified interface to automatically load an asset from disk file only 
when they are used and remove those that are not needed.  

- Scene Manager: It manages all game objects which comprises the local 3D game world. 
Usually, all game scene objects are organized in a tree hierarchy (usually called scene 
graph), with a root node on top called scene root. The rendering pipeline usually builds 
objects seen in a frame by traversing the scene graph. The following modules are also 
child objects of the scene manager.  

 Global Terrain Engine: For efficient rendering of an infinitely large terrain surface. 
It also provides physics query interface, such as getting the height of terrain at a 
specified location. 
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 Ocean Manager: For realistic and efficient rendering of water and ocean from under 
and/or above the water surface. It provides physics query interface. 

 Physics World: It is a wrapper of physics engine. All other physical objects except 
the terrain and ocean are managed in this place. These are usually solid mesh objects 
and basic geometries for collision detection and response in the virtual world.  

 Biped State Manager: It generates smooth and valid animations (actions) for a 
character according to its physical interaction with the environment, such as 
jumping, walking, swimming, etc.  

 Biped Controllers (or AI modules): Some higher level character behaviors, such as 
object following, face tracking, action recording and replaying, etc are encapsulated 
in several biped controllers, which can be dynamically assigned to characters at 
runtime.  

 Camera system: The camera system provides a view into the game world. It can be 
made to automatically position itself to avoid collision with the physical 
environment and focused on a scene object, such as the current player. 

- GUI Engine: It manages 2D GUI objects such as buttons, text, edit boxes, scrollable 
windows, etc. It also handles mouse and keyboard events in the GUI. 

- Environment Simulator: At each time step, the environment simulator advances the game 
state by a small interval. It takes input from the user, AI modules, and the scripting 
system, validates actions issued by mobile game entities, updates their impacts in the 
local virtual world, computes the new game states according to some predefined laws, and 
feeds environmental perception data to AI modules and the scripting system, etc. 

- Scripting system (or NPL runtime environment as called in ParaEngine): Game contents 
and logics can be expressed in external files, which are compiled and executed on the fly 
without modifying the game engine itself. We call this technique scripting.  The language 
we used in ParaEngine’s script files is called NPL. The module that parses and executes 
these script files is called NPL runtime environment. Game content, such as 3D scenes 
and graphic user interface, and logics such as character AI and user IO, can all be written 
and controlled entirely from script files. In NPL, network behaviors are also implemented 
in this module, which makes writing and deploying distributed games easy. 

- Game Loop: It drives the flow of the engine, providing a heartbeat for synchronizing 
object motion and rendering of frames in a steady, consistent manner.  

 Frame rate controller: it is a time management module which supplies other game 
engine modules with a steady time step.  
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Figure 1.1 Overview of the major engine modules 

1.3.2 The Game Loop 
When designing the functioning core of an interactive software system, we usually start from 
its main loop. This has not changed much even with the use of multi-threading, message 
driven and event based system. The main loop in a computer game engine is called game loop, 
which drives the flow of the engine, providing a heartbeat for synchronizing object motion 
and rendering of frames in a steady, consistent manner. A general game loop is given in Table 
1.2. It has been extended to include more details of the engine framework.  

Notes: A TIMER is a special object that decides how many times that a dependent module 
should be executed in that loop iteration. For example, one can customize a timer to produce 
30 beats per second with equal time steps. We will cover it in more detail in the frame rate 
control chapter. 

Table 1.2 Game loop 

Main game loop callback function { 

Time management: update and pre calculate all timers used in this frame. 

Process queued I/O commands (IO_ TIMER) { 

Mouse key commands: ray-picking, 2D UI input 

Key stroke commands  

Animate Camera (IO_ TIMER): Camera shares the same timer as IO 

} 

Environment simulation (SIM_TIMER) { 

Fetch last simulation result of dynamic objects 

Scene manager 

Render

Asset Manager

Environment 
simulator 

Human player 

NPL runtime 

Script 
file 

Network 

Script 
file 

GUI Engine

Human player 

I/O 

Game loop 
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Validate simulation result and update scene object parameters, accordingly. 

Update simulation data set for the next time step: 

Load necessary physics data to the physics engine; unload unused ones. 

Calculate kinematic scene objects parameters, such as player controlled character 
(this usually results from user input or AI strategies.). 

Update necessary simulation data affected by kinematic scene objects. 

Start simulating for the next time step (this may run in a separate thread than the game 
loop). 

Run AI module (SIM_TIMER) { 

Run game scripts (SIM_TIMER): Currently networking is handled transparently 
through the scripting system. 

} 

} 

Render the current frame (RENDER_TIMER) { 

Advance local animation (RENDER_TIMER) 

Render scene (RENDER_TIMER) 

Render 2D UI: windows, buttons … 

} 

In-game video capturing (RENDER_TIMER) 

} 

Besides the game loop, there may be other game threads running. These include: the 
Windows message handler, NPL runtime environment, network threads and physics engine. 
In most cases, Windows message handler and NPL runtime are running in the same thread as 
the game loop.  

1.3.3 Summary 
This chapter briefly reviews game engine and its applications. It immediately proposes our 
game engine architecture and explains the functions of each major program module. Details 
of the game engine architecture will be examined in later chapters.  

This book, together with its cited works, is described at a level of detail that allows for 
researchers and practitioners to design and build the next generation distributed computer 
game engine. We hope that the concept of distributed game engine can be accepted and more 
people will continue this concrete work with their updated visions. 

The code and architecture presented in this book is based on a formal game engine 
implementation called ParaEngine. Therefore, they are guaranteed to function well with 
current computer hardware. 

The major contributions of this book (for volume I and II), we hope, are the following: 
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- A big picture of distributed game engine platform from a practitioner’s viewpoint, 
explained in plain language.  

- A concrete introduction to game engine with a proven implementation covering every 
corner of a formal game engine. 

- Accurate redirections to other game programming and research resources on the web. 

- Addressing a few rarely discussed problems in distributed game engine design, such as: 

 Simultaneous visualization and simulation of distributed game world content and 
logic 

 Scripting language runtimes in distributed virtual environment 
 Time management in distributed game worlds 
 Autonomous character animation generation 
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Chapter 2 Spiral Development Path 

This chapter gives a possible game engine development path.  It begins at the spiral center by 
building up the skeleton of a basic game engine, and then gives the sequence of adding more 
functionalities and modules to the skeleton game engine. This section is useful for people 
building their own game engine from scratch.  In the shortest time possible, it guides you to 
establish a serious game engine development platform for later extension. 

Unlike other software system, during the development of a computer game engine, many 
modules and functions may need to be rewritten several times, not only because the 
requirement of a game engine changes fast but also because game technologies are evolving 
faster. This is one reason why game engine development team, even the most successful ones, 
is relatively small, with only one or two chief programmers.  

2.1 A Basic Skeleton of Computer Game Engine 
Figure 2.1 shows a very basic skeleton of computer game engine. Although its only function 
is displaying mesh object via script interface, it has the most basic modules as in a formal 
game engine. Starting from the beginning, we need a game loop and a time controller. We 
need an asset manager to manage textures and meshes. We need a log system for debugging 
and performance analysis. We will have a unified file access interface for file management. 
We need a scene manager to store mesh objects in a game scene. We need a camera system to 
store camera parameters, such as eye position and orientation.  We need a scripting system, so 
that we can design some script interface to allow loading scene mesh objects from script.  
Finally, we need two dummy modules, called GUI Engine and Environment Simulator, which 
do nothing in this first implementation. 

 

Time Controller Asset Manager

Textures Entity 

Mesh Entity 

File Manager File read 

Scene Manager Mesh object 

Global Terrain 

Environment
Simulator 

Game Loop

NPL Runtime 
Environment 

GUI Engine 

Camera System 

Log system 

Lua / Luabind ? 
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Figure 2.1 Basic Skeleton of a Computer Game Engine  

In this chapter, we will guide you to build this skeleton engine. But before that, we will first 
take a look at a more complete version of the spiral development path, that this book will 
guide you to complete.  

2.2 Spiral Development Path 
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Figure 2.2 Spiral development path 

Figure 2.2 is an extension of Figure 2.1. Generally speaking, engine developers can start from 
the center game loop and then adding new functionalities following the lines in the figure. 
The longer the horizontal lines, the later the connected module may be developed. For 
example, after having implemented a basic Scene Manager, one can build the Global Terrain; 
then a single height field based Terrain; then a Latticed Terrain; and then adding terrain holes, 
texture brushes and terrain morphing functionalities, etc. The implementation details for the 
extension parts can be found in the corresponding chapters of this book. 

2.3 Building Game Engine Skeleton  
This section guides you to build the game engine skeleton in Figure 2.1. We use C++ as the 
main programming language, so that we can take advantage of object oriented design, C++ 
template and namespace support. DirectX is assumed as the rendering device API. One can 
download all source code covered in this section from our website: www.paraengine.com  

2.3.1 Preparation  
The following things are almost absolutely necessary if you are a reader who wants to start 
building a modern game engine with C++. These things will not be explained in this book, but 
worth learning elsewhere. 

- C++ Namespace is very useful for a big game engine project, since we may later use 
third-party libraries which might have name collisions with our own classes or data types. 
So we advise engine developers to put every class, function or global object that belongs 
to the game engine to a namespace. Our sample game engine is called ParaEngine, so we 
put everything in namespace ParaEngine.  

- Getting familiar with STL, we will need its implementations for a number of data 
structures and algorithms. Alternatively, one should at least prepare its own efficient and 
safe counterparts for STL string, list, vector, map and set, etc. 

- Getting familiar with string safety. Game engine will do lots of IO and string 
manipulations. And one should make sure how to use functions like scanf, printf, string 
length, etc in a secure and efficient way. More information can be found at Microsoft 
MSDN on code security. 

- Learn to document your source code. Game engine will evolve to a huge project and 
always subject to changes; code documentation can provide timely updates to function 
usage for the programmer itself and other users. In ParaEngine, we use doxygen6 format 
and only document in the header files and the function bodies.  

- DirectX basic programming. One does NOT need to be very familiar with DirectX or 
OpenGL API to begin his or her first game engine. But at least, one should be able to 
understand the basic pipeline and math to render a simple 3D triangle anywhere in the 
window. This is the pre-requisite of this book for programmer readers.  

                                                      
6 Doxygen, a documentation system:  http://sourceforge.net/projects/doxygen/  

http://www.paraengine.com/
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- Scripting. This is not necessary for every game engine. But since we use an open source 
language called Lua in our scripting implementation, it becomes necessary for 
programmers to download and learn something about Lua and LuaBind. Lua is a hidden 
secrete in the game industry for decade and has been used in a number of successful 
games. We will cover more on it both in this chapter and the chapter for scripting.  

- Math library. 3D game engine will do lots of vector, quaternion and matrix math, etc. 
Many game engines have their own math libraries. DirectX SDK also provides a bunch of 
inline helper functions (prefixed with D3DX) to perform math functions. Although 
DirectX’s math functions are not of object oriented design, it is general enough to be used 
together with other math libraries.  Hence, most math of ParaEngine is done with DirectX 
helper functions, except for special conditions. ParaEngine’s own math library can be 
found at the book’s website; other good object-oriented math libraries can be found in 
some open source projects, such as the ODE physics engine7. 

2.3.2 Writing the Game Loop 
Do not use the operating system’s timer for your game loop. Game engine will need its own 
more accurate timing module. Usually, it is good practice to put your game loop in your main 
application’s while (true) {} block and let it be called as often as possible.  In a Win32 
application, it looks like the following code: 
class CMyD3DApplication : CParaEngineApp { 
… 
INT run(){ 

While(if app does not quit){ 
if(got a message){  

… Translate and dispatch the message 
}else{ 

Render3DEvironment(); // game loop in this function 
} 

} 
}; 
}; 
INT WINAPI WinMain( HINSTANCE hInst, HINSTANCE, LPSTR, INT ){ 
 CMyD3DApplication d3dApp; 
 InitCommonControls(); 
 if( FAILED( d3dApp.Create( hInst ) ) ) 
  return 0; 
 return d3dApp.Run(); 
} 
A real game loop takes more code than that, we advice novice programmers to refer to 
DirectX samples or the code provided in our book’s website. In case, one wants to use the 
same game engine for different applications, we use a special class called CParaEngineApp to 
enclose all application specific functions. In future, we can optionally build our project as a 
library file to be used in many game projects, which call the CParaEngineApp’ class API in 
their own game loops. See the code sample below. 
class CParaEngineApp{ 
public: 

                                                      
7 Open Dynamics Engine: www.ode.org/  
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/** this function should be called when the application is created. I.e. the windows HWND is valid.*/ 
HRESULT OnCreateWindow(); 
 
/** Called during device initialization, this code checks the device for some minimum set of capabilities, 
and rejects those that don't pass by returning false.*/ 
HRESULT ConfirmDevice(LPDIRECT3D9,D3DCAPS9*,DWORD,D3DFORMAT,D3DFORMAT); 
 
/** This function should be called only once when the application start, one can initialize game objects 
here.*/ 
HRESULT OneTimeSceneInit(HWND* pHWND); 
 
/** This function will be called immediately after the Direct3D device has been created, which will happen 
during application initialization and windowed/full screen toggles. This is the best location to create 
D3DPOOL_MANAGED resources since these resources need to be reloaded whenever the device is 
destroyed. Resources created here should be released in the OnDestroyDevice(). */ 
HRESULT InitDeviceObjects(LPDIRECT3DDEVICE9 pd3dDevice); 
 
/** This function will be called immediately after the Direct3D device has been reset, which will happen 
after a lost device scenario. This is the best location to create D3DPOOL_DEFAULT resources since 
these resources need to be reloaded whenever the device is lost. Resources created here should be 
released in the OnLostDevice.*/ 
HRESULT RestoreDeviceObjects(); 
 
 
/** This function will be called at the end of every frame to perform all the rendering calls for the scene, 
and it will also be called if the window needs to be repainted. After this function has returned, application 
should call IDirect3DDevice9::Present to display the contents of the next buffer in the swap chain*/ 
HRESULT Render(float fTime); 
 
/** This function will be called once at the beginning of every frame. This is the best location for your 
application to handle updates to the scene, but is not intended to contain actual rendering calls, which 
should instead be placed in the Render.  */ 
HRESULT FrameMove(float fTime); 
 
/** This function will be called immediately after the Direct3D device has entered a lost state and before 
IDirect3DDevice9::Reset is called. Resources created in the OnResetDevice should be released here, 
which generally includes all D3DPOOL_DEFAULT resources. See the "Lost Devices" section of the 
documentation for information about lost devices. */ 
HRESULT InvalidateDeviceObjects(); 
 
/** This callback function will be called immediately after the Direct3D device has been destroyed, which 
generally happens as a result of application termination or windowed/full screen toggles. Resources 
created in the OnCreateDevice()should be released here, which generally includes all 
D3DPOOL_MANAGED resources. */ 
HRESULT DeleteDeviceObjects(); 
 
/** This function should be called only once when the application end, one can destroy game objects 
here.*/ 
HRESULT FinalCleanup(); 
 
/** process game input.*/ 
void HandleUserInput(); 
 
/** Before handling window messages, application should pass incoming windows messages to the 
application through this callback function. */ 
LRESULT MsgProc( HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam ); 
 
protected: 
// … members here 
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}; 
 

CParaEngineApp does not create the Win32 window, but it need to know the current window 
handle associated with the render device; neither does it create the Direct3D devices, instead 
it saves the device pointer and use it to draw 3D objects. Although we will not create a game 
engine that supports multiple render device types, it is good practice to use a simple wrapper 
for our device object. Because there is usually only one valid device at any given time, we can 
use a global singleton class to store the device object. We will write a class called CGlobal 
and save the device object in it. In future, we will put other global objects that can only have 
one instance in the game engine to it, such as the scene manager, the GUI engine, the global 
terrain object, etc. The following is an example of CGlobal class.  
/** prestored device parameters for the directX device. */ 
struct DirectXEngine 
{ 
 LPDIRECT3D9       m_pD3D;               // The main D3D object 
 LPDIRECT3DDEVICE9 m_pd3dDevice;        // The D3D rendering device 
 D3DCAPS9          m_d3dCaps;            // Caps for the device 
 D3DSURFACE_DESC   m_d3dsdBackBuffer;    
… // others members and functions 
} 
 
// forward declarations 
… 
class CGlobals{ 
public: 
 static IDirect3DDevice9 * GetRenderDevice(); 
 /** get directX engine parameters */ 
 static DirectXEngine& GetDirectXEngine(); 
public: 
 static CSceneObject* GetScene(); 
 static SceneState*GetSceneState(); 
 static CPhysicsWorld* GetPhysicsWorld(); 
 static CParaWorldAsset* GetAssetManager(); 
 static CAISimulator* GetAISim(); 
 static CEnvironmentSim* GetEnvSim(); 
 static CGUIRoot* GetGUI(); 
 static CReport* GetReport(); 
 static CFileManager* GetFileManager(); 
 static CGlobalTerrain* GetGlobalTerrain(); 
 static COceanManager* GetOceanManager(); 
 static float GetGameTime(); 
 static HWND GetAppHWND(); 
 static const D3DXMATRIX* GetIdentityMatrix(); 
}; 
Whenever we need to use the device object, we can call CGlobal::GetRenderDevice() or 
CGlobal:: GetDirectXEngine() for more pre-stored information about the device. Please note 
that CGlobal is not a formal singleton class, it is actually a bunch of static functions. When 
using it, it looks like a namespace called CGlobal. 

Some people may argue that global members and functions are not good in C++ and they 
should be passed as parameters instead. The reason that global objects are used quite often in 
a game engine is given below. 
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- Global objects do not need to be passed as parameters. Many source files in the game 
engine will use these global objects, and they do not need to include them in the 
parameter list.  

- It makes other C++ header files clean, i.e. without the ugly name like IDirect3DDevice9* 
and it also saves many forward declaration lines in the header files.  

However, global objects should not be used without consideration. The above code already 
lists all major global objects that will be used in the entire game engine. 

2.3.3 Time Controller 
In ParaEngine, several global timers are used to synchronize engine modules that need to be 
timed. Figure 2.3 shows a circuitry of such modules running under normal state. The darker 
the color of the module is, the higher the frequency of its evaluation.  

 

Figure 2.3 Timing and I/O in ParaEngine 

One of the first jobs that a game loop does is to decide how often a certain module should be 
called and the actual and/or logical time delta between two successive calls. E.g. the Render() 
function may be called 30 times per second, with a time step of approximately 1/30 second.  

Time management is an advanced topic. We will cover it by an entire chapter. But so far, let 
us just do a most simple time controller which outputs actual (unprocessed) time step.  In 
ParaEngine, we call it frame rate controller.  
class CFrameRateController 
{ 
public: 
enum ControllerType{ 
FRC_NONE = 0,// output delta time without interpolation 
FRC_CONSTANT,// output a constant delta time disregarding the input time 
FRC_CONSTANT_OR_ABOVE,// output a constant delta time or a smaller one 
FRC_FIRSTORDER,// interpolating using a linear function 
FRC_SECONDORDER // interpolating using a second order function 
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}; 
ControllerType m_nType;/// Frame Rate Controller Type 
float m_fTime; /// current time 

// other members and functions 
… 

float FrameMove(float time){ 
switch(m_nType){ 
case FRC_NONE: 

float fElapsedTime = fTime – m_time; 
m_fTime = time; 
return fElapsedTime; 

} 
} 

}; 
In the game loop, we can use the frame rate controller class as below. Please note that we 
instantiate the frame rate controllers as global (static) objects. Different modules of the game 
engine may depend on different time controllers with different parameters.  
static CFrameRateController g_simFRC; 
static CFrameRateController g_renderFRC; 
Game loop (){ 

fTime = GetTime (); // better use QueryPerformanceFrequency() internally. 
call Framemove(fTime) 
call Render(fTime) 

} 
Framemove(float fTime){ 

float fTimeDelta = g_simFRC.FrameMove(fTime);  
… TODO 

} 
Render(float fTime){ 

float fTimeDelta = g_renderFRC.FrameMoveDelta(fTime); 
… TODO 

} 
To get the current time, it is advised to use the more advanced version of time functions 
provided by the operating system, such as QueryPerformanceFrequency, or at least 
timeGetTime(). 

2.3.4 Log System 
Log system is used to output messages during the program execution. The basic log function 
opens a file, appends text to it and then closes the file. 
void CLog::AddLogStr(const char * pStr) 
{ 
 if (pStr==NULL) { 
  return; 
 } 
 if (gLogFileHandle==NULL) { 
  gLogFileHandle = fopen(sLogFile.c_str(),"w"); 
 } 
 
 if(gLogFileHandle){ 
  fprintf(gLogFileHandle, pStr); 
  fflush(gLogFileHandle); 
 } 
} 
void CLog::WriteFormated(const char * zFormat,...) 
{ 
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 va_list args; 
 va_start(args, zFormat); 
 _vsnprintf(buf_, MAX_DEBUG_STRING_LENGTH, zFormat, args); 
 va_end(args); 
 CLog::AddLogStr(buf_); 
} 
Programmers can write many versions of the log function, such as providing formatted 
version that optionally outputs file and line number, etc. Some people like to use it with 
macros, so that log behavior may be different for debug and release build. The book’s website 
contains source code of a log system and a performance analyzer used in our game engine.   

Log system can be very useful for debugging as well as game development. A game engine 
will need to deal with tens of thousands of files, and be fault-tolerance to script and missing 
files. Logging proves to be useful not only for programmers, but also for game content 
developers to trace the problems. Hence, it is good practice to output all warnings and errors 
through the log interface.  

2.3.5 Memory Leak Detection 
Memory leak is one of the common C++ problems that could be traced by employing some 
debugging measures.  In our game engine, we use the recommended operator new and delete 
for dynamic memory allocation and de-allocation. Undiscovered memory leak problems in a 
computer game engine can deteriorate its performance easily. Memory leak usually results 
from unmatched new and delete calls. There is a trick in C++ which replaces the traditional 
new and delete operators with a debug version that detects unmatched calls. The system 
already has these functions in <crtdbg.h>. All we need to do is to include this header as 
shown below. 
#pragma once 
 
// VC++ uses this macro as debug/release mode indicator  
#ifdef _DEBUG  
// Need to undef new if including crtdbg.h which redefines new itself  
#ifdef new  
#undef new  
#endif  
 
// we need this to show file & line number of the allocation that caused  
// the leak  
#define _CRTDBG_MAP_ALLOC  
#include <stdlib.h>  
#ifndef _CRTBLD  
// Need when builded with pure MS SDK  
#define _CRTBLD  
#endif  
 
#include <crtdbg.h>  
 
// this define works around a bug with inline declarations of new, see  
//  
//      http://support.microsoft.com/support/kb/articles/Q140/8/58.asp  
//  
// for the details  
#define new  new( _NORMAL_BLOCK, __FILE__, __LINE__)  
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#endif 

2.3.6 Using Mini-Dump  
When your application crashes either in release or debug build, we can generate a mini-dump 
file, which can usually accurately bring developers to the line of source code that caused the 
crash.  Please refer to the Direct X SDK technical article for details.  

2.3.7 File Manager 
A unified file interface is very useful in a computer game engine. A game engine usually 
contains tens of thousands of resource files, most of which are read-only. In recent days, it is 
common to selectively compress and put large number of files in a single package file, such 
as in a zip archive. This will save disk space, allow multiple versions of a file to coexist, and 
increase file searching speed. The details of the file system will be covered in an entire 
chapter. But in this chapter, we will develop the basic file interface and an implementation 
using the traditional operating system’s file API.  

In ParaEngine, most resource files are loaded through the CParaFile interface, as given below. 
class CParaFile{ 
 FileHandle m_handle; 
 bool eof :1; 
 bool bIsOwner:1; 
 bool bDiskFileOpened:1; // whether a disk file handle is opened 
 char *buffer; 
 size_t pointer,size; 
 string m_filename; 
public: 
CParaFile(); 
/** Open a file for immediate reading.*/ 
CParaFile(const char* filename); 
 
/** no longer release the file buffer when this file object is destroyed. */ 
void GiveupBufferOwnership(); 
 
/** read byte stream from file at its current location. The buffer pointer will be advanced.*/ 
size_t read(void* dest, size_t bytes); 
size_t getSize(); 
size_t getPos(); 
char* getBuffer(); 
char* getPointer(); 
bool isEof(); 
void seek(int offset); 
void seekRelative(int offset); 
void close(); 
} 
The above is a primitive file interface with read-only access. It is easy to implement. The 
interesting part of this special implementation is that when the file object is created, it reads 
the entire file to a memory buffer, and when the file object is released it also releases the 
buffer. However, it allows the user to keep the buffer by calling GiveupBufferOwnership().  

To use the file interface, e.g. opening a texture bitmap file, one can use the following code: 
void LoadTexture(){ 
 CParaFile myFile(“c:\\picture.bmp”); 
 char* buffer = myFile.getBuffer(); 
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 if(buffer != 0){ 
  … // use the buffer  
 } 
 // no need to close the file or release the file buffer. 
} 

2.3.8 Asset Manager 
A computer game engine needs to deal with tens of thousands of game assets, such as textures, 
meshes, sounds, etc. It is time consuming to preload them in to memory. ParaEngine’s asset 
management uses lazy-loading scheme, i.e. when an asset is created, it is not initialized until 
it is used for the first time. Of course, we can force initializing an asset, but using the lazy-
loading scheme can make us load big continuous game scenes without noticeable real-time 
delays.  

Let us first develop a common base class called AssetEntity. In ParaEngine, other asset 
entities such as texture and mesh are all derived from this base class. In this book, we call 
resource objects entity, and call scene objects object. For example, a mesh object may need a 
mesh entity and several texture entities to render it in the scene. We will make a clear 
distinction of object and entity in the next section. The following code is AssetEntity 
implementation. 
/** Base class for managed asset entity in ParaEngine. We allow each entity to have one name shortcut 
of string type, so that the entity can be easily referenced in script files through this name.  we allow each 
asset to be associated with only one name, if multiple names are assigned to the name entity, the latest 
assigned names will override previous names. This could be limitation, and will be removed in later 
version. However, in the game engine runtime, scene node stores asset entity as pointer to them. Entity 
is by default lazily initialized, unless they are called to be initialized. */ 
struct AssetEntity { 
private: 

/** reference count of the asset.  Asset may be referenced by scene objects.  Once the reference 
count drops to 0, the asset may be unloaded, due to asset garbage collection. however, the asset is 
not completed removed. Pointers to this object will still be valid. only resources (such as texture, 
mesh data, etc) are unloaded.*/ 
int m_refcount; 

public: 
enum AssetType { 
 base=0, 
 texture=1, 
 mesh=2, 
 multianimation=3, 
 spritevertex = 4, 
 font=5, 
 sound=6, 
 mdx=7, 
 parax=8, 
 database=9 
}; 
virtual AssetType GetType(){return base;}; 
 
/** this is the unique key object. */ 
AssetKey m_key; 
 
/** whether this entity is initialized;Entity is by default lazily initialized */ 
bool  bIsInitialized:1;  
 
/** whether this is a valid resource object. */ 
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bool  m_bIsValid:1; 
 
/** whether this is a valid resource object. An invalid object may result from a non-exist resource file.*/ 
bool IsValid()  {  return m_bIsValid;  }; 
 
/** add reference count of the asset.  One may later order the asset manager to remove all asset whose 
reference count has dropped to 0 */ 
void addref()  {  ++m_refcount;  } 
 
/** decrease reference count of the asset. One may later order the asset manager to remove all asset 
whose reference count has dropped to 0. 
@return : return true if the the reference count is zero after decreasing it*/ 
bool delref()  { return --m_refcount<=0; } 
 
/** get the reference count */ 
int GetRefCount()  { return m_refcount; } 
 
AssetEntity():m_bIsValid(true),bIsInitialized(false),m_refcount(0)  {} 
AssetEntity(const AssetKey& key):   m_bIsValid(true),bIsInitialized(false),m_refcount(0),m_key(key) 
{} 
virtual ~AssetEntity(){}; 
/** call this function to safely release this asset. If there is no further reference to this object, it will 
actually delete itself (with "delete this"). So never keep a pointer to this class after you have released it.*/
virtual void Release(); 
 
/** return the key object. */ 
AssetKey& GetKey()  { return m_key; } 
 
virtual HRESULT InitDeviceObjects(){bIsInitialized =true;return S_OK;}; 
virtual HRESULT RestoreDeviceObjects(){return S_OK;}; 
virtual HRESULT InvalidateDeviceObjects(){return S_OK;}; 
virtual HRESULT DeleteDeviceObjects(){bIsInitialized =false;return S_OK;}; 
/** Clean up additional resources. This function will only be called before the destructor function.*/ 
virtual void Cleanup(){}; 
 
/** load asset.  This function will only load the asset if it has not been initialized. Since ParaEngine uses 
lazy loading, it is highly advised that user calls this function as often as possible to ensure that the asset 
is active; otherwise, they may get invalid resource pointers. Some derived class will call this function 
automatically, during resource pointer retrieval function. E.g. During each frame render routine, call this 
function if the asset is used.*/ 
void LoadAsset(){ 
 if(!bIsInitialized){ 
  InitDeviceObjects(); 
  RestoreDeviceObjects(); 
  bIsInitialized = true; 
 } 
}; 
/** unload asset.  Normally this function is called automatically by resource manager. So never call this 
function manually, unless you really mean it. */ 
void UnloadAsset(){ 
 if(bIsInitialized){ 
  InvalidateDeviceObjects(); 
  DeleteDeviceObjects(); 
  bIsInitialized = false; 
 } 
} 
/** if its reference count is zero, unload this asset object. any reference holder of this object can call this 
function to free its resources, if they believe that it will not be needed for quite some time in future.*/ 
void GarbageCollectMe(){ 
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 if(m_refcount<=0){ 
  UnloadAsset(); 
  m_refcount = 0; 
 } 
} 
}; 
Each asset entity is associated with a key which uniquely identifies the entity with others of 
the same type. It has an internal attribute which marks whether the object has been initialized.  
An entity is defined to be initialized if the entity is loaded from disk file and ready to be used 
by the render device. It has two pairs of virtual functions, which can be called to 
initialize/delete or restore/invalidate the asset entity. It also maintains a reference count for 
each asset instance. It is a counter to record how many objects are using this asset entity. For 
example, if there are two mesh objects that reference the same texture entity, then the 
reference count of the texture entity should be two.  

The following program shows the Texture and Mesh asset entity which derives from the base 
entity class. Please note that for simplicity, we use the class CDXUTMesh which can be 
found in the DirectX9.0c SDK sample for the mesh entity. In future, you may replace it with 
one of your own class that parses the mesh data file and renders the mesh.  
struct TextureEntity : public AssetEntity{ 
private: 
 /// DirectX texture object 
 LPDIRECT3DTEXTURE9    m_pTexture;              
 TextureInfo* m_pTextureInfo; 
public: 
 virtual AssetEntity::AssetType GetType(){return AssetEntity::texture;}; 
 /// the texture can be initialized from an image file 
 string sTextureFileName;  
  
 virtual HRESULT InitDeviceObjects(); 
 virtual HRESULT RestoreDeviceObjects(); 
 virtual HRESULT InvalidateDeviceObjects(); 
 virtual HRESULT DeleteDeviceObjects(); 
 
 TextureEntity(const AssetKey& key); 
 TextureEntity(); 
 virtual ~TextureEntity(); 
 LPDIRECT3DTEXTURE9 GetTexture(){ 
  LoadAsset(); 
  return m_pTexture; 
 }; 
… // other members and functions omitted. 
}; 
 
struct MeshEntity : public AssetEntity{ 
private: 
 /// For simplicity, use the mesh class provided by DirectX SDK sample 
 CDXUTMesh m_mesh; 
public: 
 virtual AssetEntity::AssetType GetType(){return AssetEntity::mesh ;}; 
 /// name of the x file name holding the mesh object 
 string sMeshFileName;     
 
 /// the view culling object used for object-level culling when rendering this mesh Entity. 
 /// Generally it contains the bounding box of the mesh. 
 CViewCullingObject m_pViewClippingObject; 
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 MeshEntity(const AssetKey& key):AssetEntity(key) {} 
 virtual ~MeshEntity(){}; 
 
 virtual HRESULT InitDeviceObjects(); 
 virtual HRESULT RestoreDeviceObjects(); 
 virtual HRESULT InvalidateDeviceObjects(); 
 virtual HRESULT DeleteDeviceObjects(); 
 CDXUTMesh* GetMesh(){ 
  LoadAsset(); 
  if(IsValid()){ return &m_mesh; } else { return NULL; } 
 }; 
 
 /** init the asset entity object. compute and save the bounding box of the mesh*/ 
 void Init(const char* sFilename); 
… // other members and functions omitted. 
}; 
To use the TextureEntity and MeshEntity, we simply call GetTexture() and GetMesh() which 
will initialize the entity if not done so yet.  

ParaEngine have many other entity types given in Figure 2.4. But for our skeleton engine, we 
only need to implement the texture and mesh entity to some extent so far. 

 

Figure 2.4 Asset entities in ParaEngine 

So far, we have shown how individual texture and mesh is wrapped in the unified AssetEntity 
class. However, in the game engine, we will need to manage thousands of game resource 
entities. We need a central place to create, store and manage all kinds of asset entities. We can 
use a C++ template class called AssetManager which keeps a certain kind of asset entities in a 
hash table (using the STL set template), so that we can locate an asset entity by its key in 
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log(n) time. The canonical name of the asset file is usually chosen as the asset key. However, 
a name shortcut can be optionally assigned to an asset entity, so that it can be easily 
referenced in script files via this short name. This can be done by using a STL map object to 
index asset entities by its short name string. Only one short name can be associated with an 
asset, if multiple names are assigned to the same entity, the latest assigned name will override 
previous ones. The template code for AssetManager is too long to be included here; one can 
refer to the source code published on our website. Below is the code outline. 
/** AssetManager manages a set of asset entities of a certain type. IDTYPE must be AssetEntity derived 
class. */ 
template <class IDTYPE> 
class AssetManager { 
public: 
 struct Compare_less{  
  // functor for operator< 
  bool operator()(const AssetEntity* _Left, const AssetEntity* _Right) const { 
   // apply operator< to operands 
   return (_Left->m_key.Compare(_Right->m_key)<0); 
  } 
 }; 
/** human readable name of asset object, which can be used as short cut to retrieve entity from its 
manager. Internally we use the key object to uniquely identify an asset. Short cut can be nil “”. */ 
std::map<std::string, AssetEntity*> m_names; 
 
/** A set of all asset entities.*/ 
std::set<AssetEntity*, Compare_less> m_items; 
 
void  Cleanup (); 
virtual void  DeleteEntity (AssetEntity *entity) 
void  DeleteByName (std::string name)  
/** Check if there is a object with a specified name, and return the pointer to it. */ 
AssetEntity *  get (std::string name)  
AssetEntity *  get (const AssetKey &key) 
/** Create a new entity object and add it to the manager. */  
pair< IDTYPE *, bool >  CreateEntity (const string &name, const AssetKey &key)  
/** get the entity by its string name */ 
IDTYPE *  GetEntity (const string &name)  
    
void  LoadAsset ()  
void  UnloadAsset ()  
void  GarbageCollectAll ()  
virtual void  InitDeviceObjects ()  
virtual void  RestoreDeviceObjects ()  
virtual void  InvalidateDeviceObjects ()  
virtual void  DeleteDeviceObjects () 
… // other members and functions omitted. 
} 
Finally, we use another singleton class called CParaWorldAsset to store all asset managers for 
different kinds of assets as below.  
class CParaWorldAsset 
{ 
 AssetManager <MeshEntity> m_MeshesManager; 
 AssetManager <TextureEntity> m_TexturesManager; 
public: 
MultiAnimationEntity* GetAnimation(const string& sIdentifier); 
TextureEntity* GetTexture(const string& sIdentifier); 
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MeshEntity* LoadMesh(const string&  sIdentifier,const string&  sMeshFileName); 
TextureEntity* LoadTexture(const string&  sIdentifier,const string&  sTextureFileName, _SurfaceType); 
… // other members and functions omitted. 
} 
In the section “Writing the Game Loop”, we have shown how to retrieve global singleton 
object in the CGlobal class. Thus, to load a mesh, we call 
AssetEntity* pAssetEntity = CGlobals::GetAssetManager()->LoadMesh(strAssetName, strFilePath); 

2.3.9 Scene Manager 
The entire 3D game world in ParaEngine is composed of two sets of objects. The first set is 
called scene objects and the second set is called asset entities. The scene objects have little to 
do with graphics; it is usually just a mathematical presentation of an object in the game world, 
such as the size and position of a character. A scene object usually does not render itself 
directly. Instead, it is usually associated with one or several asset entities. These asset entities 
are usually textures, mesh and animation data that contains the actual artwork for rendering 
and methods of drawing them.  

Throughout this book, we will create several kinds of scene objects. In this section, we will 
write the root scene object and the mesh object. The root scene object is just a container of 
various kinds of objects in the game scene, such as the global terrain, the camera, the global 
bipeds, the physics world, the asset manager, the render states, the sky boxes, the quad tree 
terrain tiles for holding all 3D scene objects, the AI simulator, and 2D GUI root, etc. But so 
far, it only needs a camera object and a list of mesh objects for our skeleton game engine.  

Most scene objects are derived from a common base class called CBaseObject. See the code 
below. The actual base object class contains far more functions than in the given code.  
class CBaseObject{ 
 enum _SceneObjectType{ 
  BaseObject=0, 
  MeshObject=2, 
  SceneRoot=6, 
  … // others 
 }; 
 virtual CBaseObject::_SceneObjectType GetType(){return CBaseObject::BaseObject;}; 
 string  m_sIdentifer;  /// unit name used in the scripting language 
 ObjectType m_objType; /// type of the object 
 ObjectShape m_objShape;         /// shape of the object 
  
 /// object shape parameters 
 … 
  
 list<CBaseObject*> m_children;    
 list<ObjectEvent>  m_objEvents;   
public: 
 CBaseObject(void); 
 virtual ~CBaseObject(void); 
 const std::string& GetName(); 
 void SetMyType(ObjectType t); 
 ObjectType GetMyType(); 
  
 virtual void GetPosition(D3DXVECTOR3 *pV); 
 virtual void SetPosition(const D3DXVECTOR3 *pV) {}; 
 virtual void GetOBB(CShapeOBB* obb); 
 virtual void GetAABB(CShapeAABB* aabb); 
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 /// used as KEY for batch rendering 
 virtual AssetEntity* GetPrimaryAsset(){return NULL;};     
 
 virtual CBaseObject* GetViewClippingObject() { return this;}; 
 
 virtual void Animate( double dTimeDelta );       
 virtual HRESULT Draw( SceneState * sceneState); 
 
…// many virtual functions and members omitted here 
} 
The base object keeps the object identifier, object type, a list of child objects and a number of 
virtual functions, etc. It has two important methods draw() and animate (). The draw method 
render the object (not including its children), and the animate method advance the animation 
of the object by a time delta if it contains animation.  

Both our root scene object (CSceneObject) and the mesh object (CMeshObject) are derived 
from the base class. CMeshObject has a mesh entity class member. The detailed 
implementation of these two classes can be found in our website.  

2.3.10 Scripting System 
Before we go into the depth of a scripting system in Chapter 16; let us first set up a basic 
scripting system with Lua and Luabind in the skeleton game engine. There are many choices 
for game scripting system implementation, such as Lua, Python, etc.  

The scripting system or NPL runtime environment in ParaEngine is built on top of Lua. 

Lua is a popular light-weighted extensible language. It offers good support for object-oriented 
programming, functional programming and data-driven programming.  

Luabind is a library that helps you create bindings between C++ and Lua. It has the ability to 
expose functions and classes, written in C++, to Lua. For example, if you have a C++ 
function that creates a mesh object as shown in the left, Luabind will automatically generate 
code at compile time to register a Lua function, so that one can immediately use the same 
function in a script file. The binding code in C++ looks magical, and is implemented utilizing 
C++ template meta programming. 

C++ code Script code 

/** a scene object for scripting*/ 
struct ParaObject { 
public: 

CBaseObject* m_pObj; // a pointer to the object 
ParaObject(CBaseObject* pObj):m_pObj(pObj) {}; 
string GetName(){return m_pObj GetName(); }; 

}; 
 
/** a table of static functions */ 
class ParaScene{ 
public: 

static static ParaObject CreateMesh (){ 
return ParaObject(new CMeshObject()); 

} 
}; 
… // register using luabind 
void CNPLRuntimeState::LoadHAPI_SceneManager(){ 

 
 
-- create a mesh and print its name 
 
local obj = ParaScene.CreateMesh(); 
local tmp = obj:GetName(); 
 
if ( tmp == “” ) then 
 io.print(“object has no name”); 
else 
 io.print(tmp); 
end 
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using namespace luabind; 
lua_State* L = GetLuaState(); 
module(L) 
[ 

namespace_("ParaScene") 
[ 
class_<ParaObject>("ParaObject") 

.def(constructor<>()) 

.def("GetName", &ParaObject::GetName), 
 
def("CreateMesh ", &ParaScene:: CreateMesh) 
] 

]; 
} 
A fairly complete implementation can be found at our website. Whenever we add new 
functions to the game engine, we might consider expose them through the scripting interface. 
Functionalities can be organized in tables. In the above example, ParaScene is a table. In the 
future, it will include all functions related to scene objects. ParaObject is a data object in 
script; it could represent any scene object derived from the base object class. 

Throughout the design of ParaEngine, we will have the following tables and data objects in 
the scripting interface (see Table 2.1 NPL Scripting Interface Overview).  

Table 2.1 NPL Scripting Interface Overview 

Table Name Description 

ParaScene ParaScene contains a list of functions to create and modify scene objects  

ParaAsset ParaAsset contains a list of functions to manage resources (asset) used in game 
world composing, such as 3d models, textures, animations, sounds, etc. 

ParaUI ParaUI contains a list of functions to create user interface controls, such as 
windows, buttons, as well as event triggers. 

ParaCamera The camera controller. 

ParaMisc Contains miscellaneous functions. 

NPL NPL foundation. 

 

Object Name Description 

ParaObject It represents a scene object. 

ParaCharacter It represents a character object. 

ParaAssetObject It represents an assert entity 

ParaUIObject It represents a GUI object 
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2.4  Summary and Outlook 
This chapter guides you to build a skeleton game engine, which has a potential architecture to 
be extended to a formal game engine. But it is not mandatory that you write your first game 
engine using exactly same methods. As we have mentioned at the very beginning of the book, 
game engine implementation is diverse and subject to constant changes. In the future, the 
computer will become faster and that the API of the operating system and DirectX, etc will 
evolve to handle more sophisticated functions internally. Writing a modern computer game 
engine needs to consider such changes seriously.  Lots of traditional algorithms and 
architectures used in game engines 3 or 5 years ago are losing popularities in today’s 
implementations. The following trends are already changing game engine architecture. 

- Multiprocessors: In fact, game platform such as Xbox 360 is already using multiple CPUs 
and supports parallel programming to some extend.  

- GPU: GPU is getting faster and more parallel. Video memory is getting as cheap as 
system memory. GPU is doing more tasks than its traditional rendering pipeline.  

- Hardware accelerated game modules: Other game engine modules besides the graphics 
module may be hardware accelerated. Physics simulation, for example, are now supported 
by special hardware. See www.agia.com.   

- Internet: game technologies are making the web 3D.  It requires game engines to host 
distributed virtual game worlds. Game engines based on traditional client/server 
architecture needs evolution.   

Finally, we direct you to a number of open source game engines, whose architecture may be 
useful to you.  

- OGRE: very good object oriented game engine framework with a large user community.  

- Irrlicht: a good clean implementation of computer game engine.  

 

 

http://www.agia.com/
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Chapter 3 Files and File formats 

To programmers, a software system can be quickly demystified by examining its protocols 
and file formats. Even for programmers without former game programming experience, it is 
quite helpful to glance over all file formats used by a game engine. We not only covers the 
file formats, but also tell you the average file size, average number of each file types 
processed by a moderate 3D game, as well as file distributions. Novice programmers and 
designers can prepare their minds and start reflecting on how large volumes of game data can 
be managed efficiently at real time.  This is a special and independent chapter that we 
designed to get you very close to a complete computer game engine in a bottom up manner 
before you even know their implementations. 

Please note that this chapter is NOT written so that one can understand everything, but it tries 
to give the big picture of a computer game engine in a bottom up manner.  

3.1 File Format from Game Requirement 
The game engine usually does not contain game data. Instead all game content are read from 
the file system, database or network on the fly. General game data that consumes most 
memory space is textures, model meshes, animations, terrain elevations, sounds, strings, and 
scripts. All of them are read by the game engine through the file interface. And there are 
unlimited ways to format them in files. The basic principle is to avoid data duplications in 
multiple files. 

The file formats that a game engine support usually depends on game requirement. Engine 
designers should make choices based on a number of requirements.  

- Data reuse: if the game engine needs the data in a number of places, then it should be put 
in a separate file. E.g. if the key frames of skeleton animations should be used by multiple 
mesh characters, then animation data and mesh data needs to be put in separate files; if a 
terrain height field  is used at multiple places of the terrain surface, then they may also be 
put in a separate file.  

- Performance: By designing new file format that matches the internal data structure of the 
game engine, we can get high performance and low memory uses. For example, the most 
effective texture format in DirectX is DDS file format. Please also note that, one does not 
need to put too much effort on file format performance issues, because the performance 
gain of many such optimizations are not as noticeable as the programmers might expect.  

- Eligibility: XML or other text based encoding is more eligible than binary encoding. 
Some very good game engine prefers text encoding for models, animations and almost 
everything except for texture bitmaps, while still having very good performance. The 
bottleneck of game performance is usually not at how one decodes data in files (in fact, 
disk file I/O takes more time than that). Some descriptive languages such as XML, 
DirectX X file, VRML have binary equivalent to their text encoding.  

- Internet: For data to be passed in the Internet, it needs to be eligible and ideally self-
descriptive. Most importantly, it has to be small or even streamed. So far, very few game 
engines make this a requirement in their design. 
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- Protection: By encoding in a proprietary and binary file format, it will increase the 
difficulty for others to extract game data from the file. The downside is that we will need 
to design specific tools to build these files from other public file format or software 
system. For example, we can use the public “tga” or “dds” as the texture file format, or 
we can slightly modify the file header to create a new texture format, so that users will 
not easily open these files with a traditional image browser.  

- Extensibility: Many old public file formats for describing mesh and animation, etc, lacks 
extensibility. When we want to add new data fields to a file, it will not be very 
comfortable with these old file formats.  There may be some workarounds, such as 
utilizing the comment lines supported by the file format; but generally it is not an elegant 
solution. Some newer file formats have very good extensibility, such as XML and 
DirectX X file. But sometimes, using them will not be easier than defining a new file 
format.  

- Generality: Most game engines supports multiple file formats for the same game data. For 
example, most game engine supports two or more public texture file formats and one or 
more public mesh file formats.  

If you are the reader who wants to start a new game engine project, it is worth spending some 
time on game requirements from the file perspective, and making the decision of which file 
formats to use or plan to use at an early stage of your development.  

3.2 ParaEngine File Formats Overview 
This section describes the file format requirement derived from the requirement of 
ParaEngine.  In ParaEngine, we want to build a game world on a continuous and infinitely 
large terrain; we wants to user to be able to manipulate everything in the virtual game world 
without any noticeable delay in graphics or physics. More specifically, we need the user to 
create and modify terrain and ocean, to lay and transform objects such as trees and buildings 
in the game world, and to create live characters and sequences of animations, all in real time. 
We want to derive a new virtual world from one or several existing game worlds without 
duplicating data, so that users can publish a large personal virtual world in very small size to 
the Internet and that large number of people could share a single virtual world with data 
distributed on each person’s computer. We need game data to be packed in smaller files for 
network transfer and accumulative display.  

 From the above requirement listing, we can design the outline of ParaEngine file format. 
File relationships is given in Figure 3.1. The basic file types are given below.  

- World Config file: the entry file for a virtual world; it contains references to a number of 
terrain config files. 

- Terrain Config file: the entry file for a fixed sized square terrain; it contains references to 
terrain elevation file, base terrain texture files, texture mask files, and on load script, etc.  

- Terrain Elevation file: height maps of terrain surface. 

- Terrain texture Mask file: the alpha maps for different texture layers on the terrain surface. 

- Terrain On load script file: a script file for loading different kinds of scene objects (such 
as meshes, lights, levels, characters, water, etc) to the game world.  
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- Mesh & Animation file: 3D meshes and animation data, etc. 

- Texture files: all kinds of textures used in the game engines. 

- Movie file: a movie sequence of a character.  

- Script files: script files in NPL, which are compiled and executed by the NPL runtime 
environment on the fly. 

- Game loop file: user specified script files which are executed repeatedly.  

- Log: the text file for log result. 

- Effect files: small pieces of code used by GPU.  

- Sound files. 

- Database file: client side database file for some game specific logics.  

- Archive file: a package file that contains a number of compressed or uncompressed files. 
E.g. Zip file is a most frequently used archive file.  

 

Figure 3.1 File relationships in ParaEngine 

Please note that we did not list files used by the NPL network engine and files used in game 
engine configuration. We will cover network related issues in volume II.  

One of the characteristics of this file design is that it breaks game data into many small and 
reusable files. For a 1600 (km*km) continuous and non-repeated 3D game world filled with 
forests, villages and cities. The file sizes are approximately given in Figure 3.2. We have 
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shown both compressed and uncompressed size. But it is the compressed size that we care 
most. Non-listed files are too trivial in size to be listed.  

 

 

Figure 3.2 File relationships in ParaEngine 

The uncompressed size of a single file is given below: 

- On load script: approx. 0-100KB. 

- Mesh & animation: approx. 10KB-1000KB 

- Texture file: 43KB, 86KB (256*256 pixels with alpha), etc 

- Elevation file: 64KB 

- Mask file: approx. 64KB-1024KB 

You can estimate the number of files from the above information. The total files are approx. 
10, 000. The data given above could differ greatly from game to game. It just helps engine 
programmers without actual game development experience to get an impression of the scale 
of a moderate sized 3D game today.  

3.3 ParaEngine File Formats 
In this section, we will give the detailed specification of file formats used in the game engine. 
We use a casual way to describe the file format, so that readers can get the outline of a file 
format more vividly. Typically, we use /** x */, --x and --[[x]] to denote comment lines; use 
[x] to denote optional field in text encoded file, {} for scoping in binary encoding, and we 
mix actual file examples with their definitions for most text encoded file formats.  

3.3.1 World Config File 
The game world is partitioned in to many equal sized squares as shown in Figure 3.3. Each 
square is called a terrain tile, and is specified by a 2D coordinate. Each terrain tile contains a 
terrain surface, and scene objects which are on that terrain. The world config file is an entry 
file for a virtual world, defining the attributes of the game world and the distribution of terrain 
tiles. 
Name: World Config File Specification 
Encoding: plain text 
Desc: Lattice Terrain Specification. (Pay attention to spaces between characters).It consists of the size 
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of a terrain tile and a mapping from tile position to their single terrain configuration file. Please note the 
first line "type = lattice" is mandatory, otherwise it will be mistreated as a single terrain configuration. If 
there are multiple single configuration files for the same tile position, the first one will be used. if there 
are multiple tile positions referring the same single terrain configuration file, copies of the same terrain 
will be created at these tile positions 
Notes: The order of tiles is not important. 
type = lattice 
TileSize = 500 
-- tile0_0.txt refers to a single terrain configuration file. 
(0,0) = terrain/data/tile0_0.txt 
(2,2) = terrain/data/tile2_2.txt 
(3,3) = terrain/data/tile3_3.txt 
(4,2) = terrain/data/tile4_2.txt 

In a typical world, the number of tiles is 64*64 and the tile size is 500 meters, which could 
describe a continuous world of 32*32(km.km). 

 

Figure 3.3 Grid-based virtual world partition 

3.3.2 Terrain Config File 
Terrain config file is the entry file for a fixed sized square terrain, which is usually referenced 
by the world config file. It contains references to terrain elevation file, base terrain texture 
files, texture mask files, and on load script, etc. On load script contains scene objects on the 
terrain tile.  
Name: Terrain Config File Specification 
Encoding: plain text 
Desc: A single terrain object can be loaded from a configuration file. 
the following file format is expected from the file, pay attention to spaces between characters: 
Notes: Some fields of the config file are optional. And some fields may be neglected or overridden. E.g. 
the size of terrain square could be overridden by the one defined in the world config file. 
-- The script file to be executed after the terrain is loaded. It is optional. 
OnLoadFile = script/loader.lua 
-- the height map file, it can either be a gray-scale image or a Para-RAW elevation file. 
Heightmapfile = texture/data/elevation.raw 
-- The main or base texture. this is optional. 
[MainTextureFile = texture/data/main.jpg] 
-- The common texture. this is optional. 
[CommonTextureFile = texture/data/dirt.jpg] 
-- size of this terrain in meters 
Size = 512 
-- the height value read from the height map will be scaled by this factor. 

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

(1, 3) (1, 5)

(2, 6)(2, 5)

Width: 500 meters 

Tile Pos X: 1 
Tile Pos Y: 3 

The actual tile position is:  
(1x500, 3x500) = (500, 1500) 
The actual tile size is 500 

t
“Sample/sample_1_3.lua”: A loading script file for (1, 3) 
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ElevScale = 1.0 
-- whether the image is vertically swapped. It takes effects on gray-scale height map image 
Swapvertical = 1 
-- hight resolution radius, within which the terrain is drawn in detail.this is optional. 
[HighResRadius = 30] 
-- we will use a LOD block to approximate the terrain at its location, if the block is smaller than 
fDetailThreshold pixels when projected to the 2D screen.  
DetailThreshold = 9.0 
--[[ When doing LOD with the height map, the max block size must be smaller than this one. This will be 
(nMaxBlockSize*nMaxBlockSize) sized region on the height map]] 
MaxBlockSize = 8 
-- the matrix size of high-resolution textures.  
DetailTextureMatrixSize = 64 
--[[ the terrain holes specified in relative positions. There can be any number of holes following the 
"hole". This section is optional.]] 
hole 
(10,10) 
(200,300) 
-- number of texture files used in the mask file . 
NumOfDetailTextures = 3 
texture/data/detail1.jpg 
texture/data/detail2.jpg 
texture/data/detail3.jpg 

3.3.3 Terrain Elevation File 
The engine will assume that the elevation file is of raw terrain elevation type; otherwise it is 
treated as a gray scale image. In a gray scale image, a pixel RGB(0.5,0.5,0.5) is of height 0. 
However, gray scale image has only 8-bits for the height levels, which is insufficient for most 
game application. That is why we need another high resolution terrain height map file format 
called Raw Terrain Elevation file, given below. 
Name: Terrain Elevation File Specification 
Encoding: binary file with file extension “.raw” 
Desc: height map of a terrain surface. The content of RAW elevation file is just a buffer of 
"float[nSize][nSize]", please note that nSize must be power of 2 or power of 2 plus 1. i.e. nSize = 
(2*...*2) | (2*...*2+1); E.g. if the height map is a grid of 129*129, then the uncompressed file size will be 
129*129*4 bytes=65KB. 
Notes: The file name must end with ".raw", for example. in the single terrain configuration file: 
Heightmapfile = terrain/data/LlanoElev.raw 
FLOAT     (4 bytes) 
FLOAT     (4 bytes) 
… 
FLOAT     (4 bytes) 
FLOAT     (4 bytes) 

3.3.4 Terrain Mask File 
Terrain mask file stores the alpha maps for different texture layers on the terrain surface. It 
describes how multiple layers of textures are blended on the terrain surface. Please Figure 3.4 
for a demo of the terrain surface. In the figure, the terrain surface is painted by blending 
several detailed textures over a base texture. For more information, please see Chapter 9.  
Name: Terrain Detailed Texture Mask File Specification 
Encoding: binary file with file extension “.mask” 
Desc: It stores the alpha maps for different texture layers on the terrain surface. 
Notes: the name of the mask file is computed as below: 
the fold of terrain configure file + folder with terrain config file name+".mask" 
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e.g. if the terrain configure file is "sample/config/sample_0_0.config.txt" 
then the mask file name will be "sample/config/sample_0_0.mask" 
DWORD nDetailTextures; // number of detailed textures in the texture set of the terrain 
// following nDetailTextures number of texture string block each of the following format 
{ 
 DWORD nStrLen; // length of the string, do not count the "\0" 
 BYTE str[nStrLen]; the string without the trailing "\0" 
} 
DWORD nCellCount; // number of cells , usually 8x8=64 
// following nCellCount block of texture cell data, each has the following format 
{ 
 DWORD numDetails; // number of detail textures in the cell 
 // following numDetails blocks of detail texture data, each has the following format 
 { 
  DWORD nSharedIndex;  // index into the texture set of the associated terrain.  
  // if nSharedIndex is 0xffffffff, there are no data following this block, otherwise it 
  // is a raw alpha mask in the following format. 
  BYTE MaskData[256*256]; // raw mask data 
 } 
} 

 

Figure 3.4 Alpha blending of multiple textures on the terrain surface 

3.3.5 Terrain On Load Script 
Terrain On load script is a script file for loading different kinds of scene objects (such as 
meshes, lights, levels, characters, water, etc) to the game world. It is referenced by the terrain 
config file, so that when that terrain tile is loaded to the game world, the game engine can 
load scene objects that should appear on that piece of terrain. The syntax of the script file is 
based on Lua, and its function APIs are defined in NPL. We will only give an example here. 
Name: Terrain On Load Script  
Encoding: script file  
Desc: loading scene objects to the scene 
Notes:  
… (lots of code omitted) 
-- The following code shows the creation of a static 3D tree on a specified position of the terrain. 
local asset = ParaAsset.LoadStaticMesh("", "sample/trees/tree1.x") 
local player = ParaScene.CreateMeshPhysicsObject("",asset, 1,1,1, true, "0.193295,0,0,0,0.187032,-
0.0488078,0,0.0488078,0.187032,0,0,0"); 
player:SetPosition(148,120.156,95);player:SetFacing(0);sceneLoader:AddChild(player); 
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… (lots of code omitted, that create other scene objects) 

 

Figure 3.5 shows a 3D scene which is constructed by on load script. Usually an on load script 
contains the creation code for a few hundreds or over a thousand scene objects in a certain 
terrain tile.  

 

Figure 3.5 From On Load Script to 3D scenes 

3.3.6 Texture File 
Usually, a game engine does not need to define its own texture file format. The internal 
presentation of a general texture in most game engines are the same, which is the default file 
format consumed by your graphics card. Hence what the game engine does is to convert 
whatever file formats from the disk to this internal file formats. Some game engine prefers 
DirectX’s DDS file format, because it is the closest format to the internal one. Popular texture 
file formats are DDS, TGA, BMP, JPG, PNG, etc. A game engine usually supports all of them 
and specially favours one or two of them. For example, in ParaEngine, we advice all 3D 
model textures to be in dds file format, and that all 2D UI  textures are in png file format.  

3.3.7 Mesh and Animation File 
Mesh and animation file format is a very flexible format defining mesh and animation data. 
Because of its flexibility, it is used in a number of places, such as defining static meshes with 
physics, meshes with level of details, simple animated meshes, characters with complex 
skeletons and many animations, particle systems, etc. It is the most complex file format in 
ParaEngine. In other game engines, separate file formats may be used for different kinds of 
purposes. However, in our implementation, we use a unified file format defined in DirectX’s 
X file format. X file format is an extensible file format which supports both text and binary 
encoding. Its file structure and extensibility is similar to XML, but is more compact and faster 
to parse.  We use the default X file serializer provided in the DirectX’s helper functions. The 
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file format presented here is optimized for the parser provided in the DirectX9.0c SDK. If one 
is not familiar with the way DirectX’s parser works, it is advised to write one’s own file 
parser.  
Name: Mesh and Animation file specification 
Encoding: text or binary file defined in DirectX’s X file format 
Desc: storing mesh and animations. 
Notes: Defined in DirectX X file template. The template is registered by the parser for file parsing. Data 
is in a tree hierarchy as shown below. All nodes are optionally. 

-- Overview of the file 
 
ParaXHeader{…} 
ParaXBody { 

[ XGlobalSequences{…} ] 
[ XVertices{…} ] 
[ XTextures{…} ] 
[ XAttachments{…} ] 
[ XViews{…} ] 
[ XIndices0{…} ] 
[ XGeosets{…} ] 
[ XRenderPass{…} ] 
[ XBones{…} ] 
[ XCameras{…} ] 
[ XLights{…} ] 
[ XAnimations{…} ] 

} 
XDWORDArray “ParaXRawData” {…} 
 
-- x file in DirectX retained mode  
 

-- X File Template 
 
xof 0303txt 0032 
# date: 2006.1.5 
template ParaEngine{ 
 <00000000-0000-0000-0000-123456789000> 
 [...] 
} 
template ParaXHeader { 
<10000000-0000-0000-0000-123456789000> 
DWORD id; 
array UCHAR version[4]; 
DWORD type; 
DWORD AnimationBitwise;# boolean animBones,animTextures 
Vector minExtent; 
Vector maxExtent; 
DWORD nReserved; 
} 
 
template ModelAnimation{ 
<10000002-0000-0000-0000-123456789000> 
DWORD animID; 
DWORD timeStart; 
DWORD timeEnd; 
FLOAT moveSpeed; 
DWORD loopType; 
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DWORD flags; 
DWORD playSpeed; 
Vector boxA; 
Vector boxB; 
FLOAT rad; 
} 
template AnimationBlock { 
<10000003-0000-0000-0000-123456789000> 
WORD type; 
WORD seq; 
DWORD nRanges; 
DWORD ofsRanges; 
DWORD nTimes; 
DWORD ofsTimes; 
DWORD nKeys; 
DWORD ofsKeys; 
} 
template ModelBoneDef { 
<10000004-0000-0000-0000-123456789000> 
DWORD animid; 
DWORD flags; 
WORD parent; 
WORD geoid; 
AnimationBlock translation; 
AnimationBlock rotation; 
AnimationBlock scaling; 
Vector pivot; 
} 
template ModelVertex { 
<10000006-0000-0000-0000-123456789000> 
Vector pos; 
array UCHAR weights[4]; 
array UCHAR bones[4]; 
Vector normal; 
Coords2d texcoords; 
DWORD Color; 
} 
template ModelView { 
<10000007-0000-0000-0000-123456789000> 
DWORD nIndex; 
DWORD ofsIndex; 
DWORD nTris; 
DWORD ofsTris; 
DWORD nTex; 
DWORD ofsTex; 
} 
template ModelGeoset { 
<10000008-0000-0000-0000-123456789000> 
WORD id; 
WORD vstart; 
WORD vcount; 
WORD istart; 
WORD icount; 
Vector v; 
} 
template ModelTexUnit{ 
<10000009-0000-0000-0000-123456789000> 
WORD flags; 
WORD order; 
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WORD textureid; 
} 
template ModelTextureDef { 
<1000000d-0000-0000-0000-123456789000> 
DWORD type; 
DWORD flags; 
STRING name; 
} 
template ModelLightDef { 
<1000000e-0000-0000-0000-123456789000> 
WORD type; 
WORD bone; 
Vector pos; 
AnimationBlock ambColor; 
AnimationBlock ambIntensity; 
AnimationBlock color; 
AnimationBlock intensity; 
AnimationBlock attStart; 
AnimationBlock attEnd; 
AnimationBlock unk1; 
} 
template ModelCameraDef { 
<1000000f-0000-0000-0000-123456789000> 
DWORD id; 
FLOAT fov; 
FLOAT farclip; 
FLOAT nearclip; 
AnimationBlock transPos; 
Vector pos; 
AnimationBlock transTarget; 
Vector target; 
AnimationBlock rot; 
} 
template ModelAttachmentDef { 
<10000014-0000-0000-0000-123456789000> 
DWORD id; 
DWORD bone; 
Vector pos; 
AnimationBlock unk; 
} 
template ModelRenderPass { 
<10000015-0000-0000-0000-123456789000> 
WORD indexStart; 
WORD indexCount; 
WORD vertexStart; 
WORD vertexEnd; 
DWORD tex; 
float p; 
WORD color; 
WORD opacity; 
WORD blendmode; 
DWORD order; 
DWORD geoset; 
DWORD renderstateBitWise; # usetex2, useenvmap, cull, trans, unlit, nozwrite 
} 
## ParaXBody contains array blocks 
template ParaXBody{ 
 <20000000-0000-0000-0000-123456789000> 
 [...] 
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} 
####### array blocks ####### 
template XVertices { 
<20000001-0000-0000-0000-123456789000> 
DWORD nType; 
DWORD nVertexBytes; 
DWORD nVertices; 
DWORD ofsVertices; 
} 
template XTextures { 
<20000002-0000-0000-0000-123456789000> 
DWORD nTextures; 
array ModelTextureDef textures[nTextures]; 
} 
template XAttachments{ 
<20000003-0000-0000-0000-123456789000> 
DWORD nAttachments; 
DWORD nAttachLookup; 
array ModelAttachmentDef attachments[nAttachments]; 
array DWORD attLookup[nAttachLookup]; 
} 
template XViews{ 
<20000005-0000-0000-0000-123456789000> 
DWORD nView; 
array ModelView views[nView]; 
} 
### XIndices0 only for view0 ### 
template XIndices0{  
<20000006-0000-0000-0000-123456789000> 
DWORD nIndices; 
DWORD ofsIndices; 
} 
template XGeosets{  
<20000007-0000-0000-0000-123456789000> 
DWORD nGeosets; 
array ModelGeoset geosets[nGeosets]; 
} 
template XRenderPass{  
<20000008-0000-0000-0000-123456789000> 
DWORD nPasses; 
array ModelRenderPass passes[nPasses]; 
} 
template XBones{  
<20000009-0000-0000-0000-123456789000> 
DWORD nBones; 
array ModelBoneDef bones[nBones]; 
} 
template XCameras{  
<2000000d-0000-0000-0000-123456789000> 
DWORD nCameras; 
array ModelCameraDef cameras[nCameras]; 
} 
template XLights{  
<2000000e-0000-0000-0000-123456789000> 
DWORD nLights; 
array ModelLightDef lights[nLights]; 
} 
template XAnimations{  
<2000000f-0000-0000-0000-123456789000> 
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DWORD nAnimations; 
array ModelAnimation anims[nAnimations]; 
} 
template XDWORDArray{  
<20000010-0000-0000-0000-123456789000> 
DWORD nCount; 
array DWORD dwData[nCount]; 
} 

3.3.8 Archive File 
Archive file is a package file that contains a number of compressed or uncompressed files. 
E.g. Zip file is a most frequently used archive file. When a game is released, people like to put 
all files in several archive files by file type or file usage. Big package file may contain tens of 
thousands of files. File searching in an archive file is made faster by loading and keeping the 
entire file directory of the archive file in memory. Below is the ZIP file format illustration, 
which is a popular archive file format used by many game engines.  
Name: Zip File 
Encoding: Binary file 
Desc: chunks of compressed or uncompressed files. Files are stored in arbitrary order.  Large .ZIP files 
can span multiple diskette media or be split into user-defined segment sizes. 
Notes: Zip file is a chunked file format with a directory at the end of the file.  
Overall .ZIP file format: 
 
    [local file header 1] 
    [file data 1] 
    [data descriptor 1] 
    … 
    [local file header n] 
    [file data n] 
    [data descriptor n] 
    [archive decryption header]  
    [archive extra data record]  
    [central directory] 
    [zip64 end of central directory record] 
    [zip64 end of central directory locator]  
    [end of central directory record] 
 
  A.  Local file header: 
 
        local file header signature     4 bytes  (0x04034b50) 
        version needed to extract       2 bytes 
        general purpose bit flag        2 bytes 
        compression method              2 bytes 
        last mod file time              2 bytes 
        last mod file date              2 bytes 
        crc-32                          4 bytes 
        compressed size                 4 bytes 
        uncompressed size               4 bytes 
        file name length                2 bytes 
        extra field length              2 bytes 
 
        file name (variable size) 
        extra field (variable size) 
 
  B.  File data 
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Immediately following the local header for a file is the compressed or stored data for the file. The 
series of [local file header][file data][data descriptor] repeats for each file in the .ZIP archive.  

3.3.9 NPL Script File 
Scripting will be covered in greater detail in volume II of the book as well as in Chapter 16 
of the book. We will only give some code examples of NPL script, here.  
Outline of Script file 
local function activate() 

if (state == nil) then --state is a global variable 
local playname = “abc”; 
-- activate another script on remote machine. 
NPL.activate("ABC: /pol_intro.lua", "state=nil;"); 
-- activate another script on local machine. 
NPL.activate(“(gl)polintro.lua”,””); 

else  
… … 
end 

end 
state={}; -- a global variable (table), usually for passing and share states among NPL files. 
NPL.this (activate); --tell NPL which function is used as the activation function of this file. 
 
A sample script that creates a “hello world!” dialog 
local function activate() 
 local window, button, text; --declare local variables 
 --create a new window called "mainwindow" at (50,20) with size 600*400 
 window=ParaUI.CreateUIObject("container","mainwindow","_lt",50,20,600,400); 
 --attach the UI object to screen (root) 
 window:AttachToRoot(); 
 --create a new button called "btnok" at (50,350) with size 70*30 
 button=ParaUI.CreateUIObject("button","btnok","_lt",50,350,70,30); 
 --attach the button to the window 
 window:AddChild(button); 
 --set text of the button 
 button.text="OK"; 
 --if the button is clicked, delete the window 
 button.onclick=[[(gl)script/empty.lua; ParaUI.Destroy("mainwindow");]]; 
 --create a new text box called "txt" at (50,50) with size 500*300 
 text=ParaUI.CreateUIObject("text","txt","_lt",50,50,500,300); 
 --attach the text to the window 
 window:AddChild(text); 
 text.text="Hello world!!!"; 
end 
NPL.this(activate); 
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3.4 Summary and Outlook 
This chapter examines the major file formats used by a computer game engine. When reading 
the rest of the book, one may frequently goes back to this chapter for reevaluations. During 
the development of a special game, several new file formats may be created. Major updates to 
file specification can be disastrous, but they are sometimes inevitable. Our suggestion is to 
prepare for such occasions from the very beginning. Using general and extensible file formats 
is a wise practice for most occasions.  

Table 3.1 is a list of public file formats that one may consider to use in a game engine. All 
of them have been used successfully in existing games.  

Table 3.1 File Formats in Game Engine 

File types Description 

DDS, TGA, JPG, BMP,PNG Textures file formats 

X, LWO, M2, 3DS, XML, X3D(VRML) Mesh and animations 

Raw, grey scale image Terrain Height map 

LUA, PYTHON, C sharp(CS) Script files 

Txt, XML Configuration files 

Sqlite (DB), XML Client database or data set files 

Zip, 7zip Archive files 

Wav, mp3, ogg Sound files 

Fx, cg Shader files 
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Chapter 4 Scene Management 

From this chapter, we will begin our formal journey into computer game engine architecture. 
We already covered some scene management and asset management in Chapter 1 and 2. In 
this chapter, we will take a closer look at it. 

4.1 Foundation 
3D Scene management is about the organization of scene objects, such as static meshes, sky 
boxes, characters, terrain, ocean, lights, etc. In games, scene objects are vegetations on the 
terrain, props and buildings, a table, a glass of water, birds flying in the sky, fish swimming in 
water, creatures lurked in the forest, controllable characters, etc. Some of these scene objects 
are static; others are mobile. Some of them contain physics, others reacts to physics. Because 
an engine can not efficiently load and simulate the entire game world, some objects are loaded 
only when they are potentially visible or related to the current game logics. E.g. in a typical 
role playing game, only the regions near the active players are loaded to the scene manager.  

Scene management is about a dynamic data structure of game objects in the scene, where 
the graphics rendering pipeline, the physics simulation engine, the game AI modules, etc 
could quickly get the objects they need for further processing. Most of these modules that use 
data in the scene manager share a common requirement: that is querying by spatiality. E.g. the 
rendering pipeline wants to get a list of objects near the current camera position, so that 
objects in the camera view frustum can be rendered; the physics engine wants to know what 
other objects are in contact with any dynamic object; the AI modules wants to know all other 
creatures which are within the view radius of any creature. Also, most scene objects, 
regardless of its internal presentations, can be abstracted by a simpler shape such as box and 
sphere. This shared property of scene objects are often used by the scene manager for 
managing the dynamic data structure of game objects.  

According to game requirement, there are many ways to organize scene objects. Sometimes, 
simple structure can be more effective if used properly. For example, if the game is small, 
such as scroll screen fighter games, one can put everything in a list; if the game map is small, 
one can put all objects in a grid, i.e. a single two dimensional array.  In this book, however, 
we will only deal with the situation when the game world is too large to be loaded at once and 
contains too many objects to be traversed linearly in a list. The solution that most game 
engine adopts involves the use of a tree-based hierarchical data structure.  

4.1.1 Hierarchical Scene Management  
Instead of covering several solutions, we will only give one hierarchical scene management 
solution which is used in ParaEngine. Other methods can be found in the outlook section of 
this chapter. 

In our implementation, we use a single root object called scene root object (CSceneObject) 
as the entry point to the scene, then we organize all scene objects spatially in it. We design a 
special dummy scene object called terrain tile object (CTerrainTile) for that purposes, the data 
structure that we use is called quad-tree. Here is how it works. At the root of the quad tree is a 
CTerrainTileRoot object, which represents the entire game world. The root node contains up 
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to four child terrain tile nodes, which divides the game world into four equal sized square 
regions; each child terrain tile nodes can contain another four terrain tiles, which further 
divides the region into four smaller equal-sized square region. Figure 4.1 shows the partition 
of a game world into gradually smaller square regions.  

 

Figure 4.1 Quad-tree of Terrain Tiles 

Initially, there is only one terrain tile, i.e. the root terrain tile. As new scene objects are 
dynamically loaded or added to the scene, a hierarchy of terrain tiles will be created, to which 
new scene objects are attached. The rule to spawn new terrain tile and attaching scene objects 
to it is given below.  

- Two of the important attributes of the root terrain tile are the size of the game world and 
the maximum depth of the quad tree. E.g. if the game world is 32000 *32000 (m.m) and 
the maximum tree depth is set to 8, then the smallest terrain tile is a square of 
(32000/28=128 m) in length.  

- When the scene is emptied, the quad tree has only a root node without any child terrain 
nodes. 

- When a new scene object is attached to the scene. The bounding volume of the scene 
object is computed (the basic bounding volume is usually a 3D bounding box which 
contains the object); the bounding volume is projected to a 2D plane (i.e. ignoring the 
height of the object).  

- The projected bounding volume is tested from the root of the terrain tile. It first tests if the 
bounding volume falls in to one of the four regions of its child terrain tile. If the bounding 
volume does not fall into any of the sub regions, the object is attached to the current 
terrain tile; otherwise we will create the sub terrain tile which contains the bounding 
volume if it has not been created before and try to attach the new object to that sub terrain 
tile. This process continues recursively until either the object has been attached to a 
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terrain tile, or we have reached the maximum depth of the quad tree. In the latter case, the 
scene object will be attached to the leaf terrain tile anyway. 

Figure 4.2 illustrates objects on the hierarchy of quad tree. The quad-tree will automatically 
expand itself as new objects are attached to it. Although most objects are dynamically inserted 
into the scene graph tree according to their geographical locations, there are some special 
objects that do not follow this rule. These objects are active objects that need global 
simulations. For example, some mobile creatures are attached to the Terrain Tile in which 
they are patrolling, instead of to the smallest tile that contains its bounding volume. 

 

 

Figure 4.2 Objects on Quad-tree 

The reason to use a quad tree as the top level scene hierarchy is that, in a big and extensible 
3D world (excluding outer space games), most scene objects are located horizontally in a 
large plane. Quad tree is thus the most efficient structure to locate a group of objects around a 
certain 3D position. Please note that quad tree is just one of the many scene organization 
structures. Other spatial organizational structure includes Octree, BSP tree, Portals, etc, which 
divides the space according to different rules. They are used elsewhere in the game engine. 
E.g. a specific object (such as an in-door castle, physics triangle meshes, etc) which is 
attached to the quad-tree may organize its internal objects (such as sub-geomerty, triangles, 
etc) by these other structures. But the top-level organization of scene objects we advise to use 
is a quad-tree.  
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4.1.2 Scene Graph 
Some people call scene management, scene graph management. What we have gone 

through (i.e. the quad-tree terrain tile structure in the scene manager) can also be called a 
scene graph. A scene graph is a tree where the nodes are scene objects and their sub objects 
are arranged in some sort of hierarchy. These nodes may be abstract objects, physical objects, 
meshes, characters, body parts of characters, triangles, etc.  

In this book, we sometimes call the scene manager, a scene graph. And when we speak of 
traversing the scene graph, we really mean accessing objects in the scene in some order.  

4.1.3 Using Scene Manager 
In previous sections, we talked about how the scene manager organizes scene objects in a tree 
hierarchy or a scene graph. In this section, we will explore the way to query the scene objects 
and using the scene manager to complete some specific tasks. 

4.1.3.1 View Clipping Object and Bounding Volumes 
Before we can efficiently perform queries on the scene graph, we need to design the common 
base interface for all scene objects on the scene graph. Recall that in Chapter 2, we designed a 
class called CBaseObject, which contains attributes and functionalities that every scene 
objects should support. Among them there is a function called GetViewClippingObect() 
which returns another, if not the same, CBaseObject. The object is a view clipping object that 
contains the bounding volume information of the scene object. The most commonly used 
bounding volume presentation is a 3D box. We call a bounding box whose axis are always 
aligned with the world coordinate, an axis aligned bounding box or AABB. We call a 
bounding box which is arbitrarily positioned in world coordinate system, an oriented 
bounding box or OBB. The view clipping object contains a unified interface for getting 
information of different bounding volume types from the same object, such as AABB, OBB, 
sphere, etc. For example, most static mesh objects’ bounding volumes are OBB.  

Object’s bounding volume information is widely used during scene query. For example, if 
we want to find out if a scene object intersects with another object, we can first tests the two 
objects by their respective bounding volumes (view clipping objects); if the two view clipping 
objects do not intersect, we know that the two objects does not intersect neither; if, however, 
they do intersect, we can continue further testing or simply report contact, depending on our 
testing requirement. View clipping objects are usually pre-calculated when their associating 
objects are loaded, so that they can be obtained very fast.  See Figure 4.3. 
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Figure 4.3 Object-level Testing Using Oriented Bounding Boxes 

4.1.3.2 Traversing Scene Graph  
The most basic use of a scene manager is scene graph traversal. During scene rendering, 
mouse ray-picking and environment simulation, we will need to traverse the scene graph 
using different criteria. The goal of a traversal is finding relevant objects such as objects that 
intersect with the camera view frustum, a ray or a radius. During scene traversal, we may 
create temporary data structures or even modifying the scene graph, such as the location of an 
object changes in the scene. The detailed behaviors for different scene traversal tasks are 
discussed in their respective chapters. Here, we describe the general algorithm of doing a fast 
scene traversal.  

Generally speaking, we can use either breadth-first or depth first traversal, or their 
combinations. However, we rarely need a full traversal of the scene graph. In most cases, we 
only want to “touch” objects which intersect with a testing area, such as the camera view 
frustum, the mouse ray, etc. We can do so by only going deeper into a scene graph level, if 
and only if it contains or intersects with the testing area. The complete algorithm will be given 
in the code section. 

4.1.4 Dynamic Scene Loading and Unloading 
Another issue that is not covered so far is when to load and unload a chunk of scene objects to 
or from the scene manager. In Chapter 3, readers may notice that the game world in 
ParaEngine is divided into lattices. Each terrain in the lattice is associated with an on load 
script from which the game engine can construct scene objects in that region. When a user 
controlled or active character is about to come into a certain terrain lattice, the game engine 
will automatically load all scene objects in that lattice and the adjacent 8 lattices. To deal with 
objects spanning the boarder of two or more lattices and to provide more granular and safe 
scene loading management, we will introduce another module of the scene manager called 
managed loader.  

A managed loader is a group of scene objects which are usually close to each other. For 
example, a bunch of small houses can be grouped by one loader; whereas a bigger house with 
internal decorations can be grouped in another. The loading behavior for all objects in a 
managed loader is synchronized, i.e. they are attached to the scene manager at one time.  

Bounding volume 

Testing by Oriented Bounding Boxes
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Management loader is also unique in the scene, and that it can only be attached once to the 
scene manager. With this feature, we can group objects on terrain borders to a unique 
managed loader and execute the managed loader in all adjacent terrain lattices’ on load scripts. 
Even though, the same managed loader is executed multiple times, objects in the managed 
loader are only attached once to the scene.  

A managed loader is a kind of global scene object for dynamic scene object loading and 
unloading. The content of a managed loader can no longer be changed once the loader has 
been attached to the scene. Once objects in managed loader are attached to the scene graph, 
the ownership of these objects transferred from the loader to the scene manager. The owner of 
an object is responsible to clean up the object when it is no longer needed. The more exact 
behavior of a managed loader is given below:  

- The objects in a managed loader will be automatically attached to the scene as a single 
entity. 

- Generally speaking, only static objects are put in a managed loader. 

- Managed loaders must be identified by a globally unique name. 

- If one creates a manager loader with the same name several times, reference to the first 
loader is returned for all subsequent creation calls. 

- The bounding box of a managed loader will be automatically re-calculated as new objects 
are added to it. 

- Linearly traversing all managed loaders in the scene is sufficient to decide which group of 
scene objects to load or unload. Although this routine is executed when the CPU is free, it 
is good practice to keep the total number of managed loaders small. Usually a couple of 
hundred loaders are fine for current hardware for one game scene. 

- It is good practice to use managed loaders to attach static scene objects to the scene, 
instead of attaching them directly. Managed loaders prevent duplicated attachments.  

- It is good practice to put static objects which are physically close to each other in a single 
managed loader.  

- It is good practice to put objects on latticed terrain boarders in to a managed loader.  

Dynamic scene unloading is not quite an issue in scene management and sometimes not 
quite necessary. The major penalty for unloaded scene objects is that it uses some system 
memory for its bounding volumes. But since unused objects are not touched during scene 
traversal; there are no noticeable penalties for it. Hence, some game engines never remove 
scene objects from the scene unless it has been manually instructed, such as the user resets the 
game world. Moreover, in our game engine we separate object from its asset, which further 
reduced the data keeping size of pure scene object. We do, however, provide a garbage 
collection function to be manually called to release unused asset entities. 
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4.2 Scene Manager Architecture 

4.2.1 The Scene Root Object 
The Scene Root Object (CSceneObject) is a very important class in the game engine. It is the 
root of the entire scene graph tree. The tree is flat at its root node, but deep on some of its 
child nodes. For examples, on the root of the scene object is a flat list of engine objects, such 
as the global terrain, the cameras, the global bipeds, the physics world, the asset manager, the 
render state, the sky boxes, the quad tree terrain tiles for holding all 3D scene objects, the AI 
simulator, and 2D GUI root object, etc. The CSceneObject also controls most global states of 
the 3D scene, such as fog, shadow and some debugging information.  

The rendering pipeline is built directly to the root scene object. Actually the entire game 
world can be accessed through the root scene object. Figure 4.4 shows the Collaboration 
diagram of the class. 

 

Figure 4.4 The Collaboration diagram for the root scene object 

Figure 4.5 is a list of objects inherited from the common scene object interface 
CBaseObject, which has been explained in Chapter 2. We also list some basic functions 
related to bounding volume. Bounding volume is used for scene traversal against a testing 
area.  
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class CBaseObject{ 
 
.. // function related to bounding volume 
 
void SetBoundingBox(…); 
void GetBoundingBox(…); 
 
void SetBoundSphere(FLOAT fRadius); 
FLOAT GetBoundSphere(); 
 
/** get the oriented bounding box in world space. One may 
need to shift by the rendering origin if used for that purposes.*/ 
virtual void GetOBB(CShapeOBB* obb); 
virtual void GetAABB(CShapeAABB* aabb); 
 
virtual bool TestCollisionSphere(…); 
virtual bool TestCollisionObject(CBaseObject* pObj); 
virtual bool TestCollisionRay(…); 
virtual FLOAT GetSphereCollisionDepth(…); 
virtual FLOAT GetObjectCollisionDepth(CBaseObject* pObj); 
float GetObjectToPointDistance(…); 
 
.. // lots of functions omitted. 
} 

Figure 4.5 The base class and bounding volume functions 

4.2.2 Relative Position VS Absolute Position 
Although the scene graph is hierarchically structured in a quad tree, scene objects attached to 
the quad-tree terrain tiles are all specified in world coordinate system. Alternatively, a game 
engine can use relative position for objects in the scene hierarchy, i.e. a scene object’s 
position is made relative to its parent’s position. Although relative position has its merit, we 
use world coordinates for all independent scene objects. This makes moving objects in a 
dynamic game world easier. The more important reason is that absolute position works well 
with other game engine module such as the physics and scripting system. In case of lower 
level scene hierarchy, relative position is preferred, e.g., body parts of a character object are 
made relative to their parent node. 

4.2.3 Quad Tree Terrain Tiles 
The following program shows the interface for terrain tile and the root terrain tile. 
class CTerrainTile{ 
public: 
 CTerrainTile(void); 
 CTerrainTile(float x, float y, float r); 
 ~CTerrainTile(void); 
 void Cleanup(); 
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public: 
 /// -- data structuring 
 #define  MAX_NUM_SUBTILE  4 
 CTerrainTile*   m_subtiles[MAX_NUM_SUBTILE]; 
 list<CBaseObject*>  m_listSolidObj; 
 list<CBaseObject*>  m_listFreespace; 
 /// mobile biped objects that is moving in this region 
 list<CBipedObject*>  m_listBipedVisitors; 
 /// global name mapping. 
 map<string, CBaseObject*> m_namemap; 
 
 /// the central position of the terrain. 
 float m_fX, m_fY; 
 /// the radius of the entire terrain (half the length of the square terrain). 
 float m_fRadius; 
public: 
 /// get object position in the world space 
 void GetPosition(D3DXVECTOR3 *pV); 
 bool TestCollisionSphere(const D3DXVECTOR3* pvCenter, FLOAT radius); 
 bool TestCollisionObject(CBaseObject* pObj); 
 float GetSphereCollisionDepth(D3DXVECTOR3* pvCenter, FLOAT radius, bool bSolveDepth); 
 float GetObjectCollisionDepth(CBaseObject* pObj); 
 
 int GetSubTileIndexByPoint(FLOAT fAbsoluteX, FLOAT fAbsoluteY); 
  
 CBaseObject* SearchObject(const char* pSearchString, int search_mode=0, int reserved = 0); 
 CBaseObject* GetGlobalObject(const string& sName); 
 void DestroyObjectByName(const char* sName); 
…// some functions and members are omitted 
}; 
 
class CTerrainTileRoot: public CTerrainTile{ 

int  m_nDepth; 
public: 

/// Reset Terrain 
void ResetTerrain(FLOAT fRadius, int nDepth); 
/// Get and create tile 
CTerrainTile* GetTileByPoint(FLOAT fAbsoluteX, FLOAT fAbsoluteY, 
      FLOAT fPtWidth=0, FLOAT fPtHeight=0); 
/** attach object to the proper tile that best fits it. the terrain tile to which the object is attached is 
returned */ 
CTerrainTile* AutoAttachObject(CBaseObject* obj); 
 
/**  detach the object from the tile or its sub tiles. the function will return immediately when the 
first matching object is found and detached*/ 
bool DetachObject(CBaseObject * pObject, CTerrainTile* pTile=NULL); 

…// some functions and members are omitted 
}; 

4.3 Code and Performance Discussion 
The code sample for traversing scene graph can be found in the rendering pipeline chapter. 
The code for performing collision detection between two objects can be found in the picking 
chapter and physics chapter. The remaining scene manager implementation is just a tree based 
data structure.  We will discuss here about the balance of the quad-tree terrain tile.  
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4.3.1 Quad-tree Balance Discussion 
Quad-tree is used for organizing scene objects spatially. What measures shall we based on for 
determine the maximum tree depth of the quad tree? The answer to that question usually 
depends on the density of scene objects and the average volume of scene objects. Ideally, we 
should minimize the tree depth, while keeping the number of objects in the leaf-node small. 
Typically, we like to keep the number of objects in the leaf node below 100. The question 
now becomes how much land 100 objects will usually occupy. In the situation of our game, a 
100m*100 m square region might contain 100 top-level objects on average, such as trees and 
props. So given the size of the entire game world (fWorldSize) and the size of the smallest 
terrain quad (fSmallestTileSize), in this case, it is 100 m; we can calculate the preferred tree 
depth with the following formula: 

// fSmallestTileSize = 100.f; 

int nDepth = (int)(log10( fWorldSize / fSmallestTileSize )/log10(2.f)); 

if(nDepth<2)  nDepth = 2; 

4.4 Summary and Outlook 
Scene management technique is very dependent on the type of games that a game engine 
support. For example, typical game types are: 

- Indoor games: the game is usually comprised of many independent game levels, each of 
which takes place in a relatively small region and mainly indoors.  

- Outdoor games: the game story takes place in a continuous and large (e.g. tens of 
kilometers) scene with much longer line of sight. It features large areas of landscape and 
realistic terrain and ocean rendering. It may also be mixed with indoor scenes. This is the 
game type our game engine is designed for. 

- Outer space games: it features infinitely large space that goes beyond 32 bits floating 
point presentations and extends in all directions. 

- Special games: Any other games that do not belong to the above genres. 

Game engines for different game genres are usually different game engines. Of course, a 
scene manager can be designed to support several scene management methods, but this 
usually greatly complicates the design of the game engine. This is perhaps one of the reasons 
why most game engines today only target on one game genre.  

The following is a brief introduction of other scene management data structures besides 
quad tree.  

- Binary Space Partitioning (BSP) tree: It is a very efficient way of computing visibility 
and collision detection in occluded environments. It may include bounding boxes for 
clipping test. Leafy BSP tree with potentially visible sets (PVS) matrix can do fast 
occlusion test. The drawback is that BSP only supports static mesh, involves much 
preprocessing and consumes much maintenance memory.  

- Octree (3D) or quad tree (2D): They are very general, scalable and widely applicable data 
structure for storing objects spatially. It may be weak at occlusion test. Yet with occlusion 
test supported in hardware, it is sufficient to use this simple data structure in most cases. 
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- Portal rendering: Like BSP, it allows programmers to quickly decide what is potentially 
visible in the scene from the camera eye position. It is very suitable for indoor scenes with 
many dynamic objects in each room. Unlike BSP, the world hierarchy in portal rendering 
can not be automatically computed, and requires human editing. Visibility is computed in 
real time, not preprocessed. It is also the most difficult one of the three methods discussed. 
Moreover, it usually involves additional works for game level editor. 
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Chapter 5 Rendering Pipeline 

In a game engine, the part that deals with graphic storage and displaying is often called 3D 
engine or rendering engine. The rendering pipeline can be regarded as the main loop in a 3D 
engine. What the rendering pipeline does is traversing the scene graph, getting objects that are 
potentially visible by the current camera, and drawing them to the screen. The details of a 
rendering pipeline can differ greatly for different game engines. This chapter only covers the 
basics of a rendering pipeline and details about the top level rendering pipeline used in 
ParaEngine. This top level render pipeline mainly works at the object level and calls the 
potentially visible scene objects’ render function for the actual rendering in polygon level. 
The pipeline discussed here is suitable for hybrid outdoor and indoor rendering. 

5.1 Foundation 

5.1.1 Render Pipeline Basics 
At one end of the pipeline is polygon data of a scene object in local coordinate system; at the 
other end is colored pixels in screen coordinate system. The middle stages usually involves, 
translating the object from local space to world space, check if the object is visible from the 
current camera settings, remove back and hidden faces if possible, transform polygons from 
world space to camera space, apply the perspective transform, do the screen space clipping 
and rasterizing. Formal introduction of a standard rendering pipeline can be found in DirectX 
SDK. This book will not cover it. If you are a programmer reader, we assume that you already 
read the rendering pipeline basics in DirectX SDK. 

Because a rendering pipeline is a fairly fixed routine, it is accelerated by graphic processing 
unit (GPU). Since DirectX 8.0, game engine programmers can sidestep the fixed rendering 
pipeline, and program their own pipeline by replacing some render stage with their own GPU 
programs.  In the coming DirectX Version 10, fixed rendering pipeline is completely replaced 
by the new programmable pipeline. Today, most 3D engines are based on the CPU / GPU 
parallel processing architecture. An engine programmer has to program for both and balance 
the threads of execution.  

Figure 5.1 shows the rendering pipeline in CPU / GPU architecture. The white blocks stand 
for procedures completed by CPU, the colored blocks stand for procedures completed by 
GPU. The figure has roughly three columns. The left column denotes data set used by 
pipeline procedures. The middle column denotes pipeline procedures in blocks. The right 
column contains some brief descriptions of functions completed by a pipeline procedure on 
the left. The pipeline flows from top to bottom in the figure. It begins by traversing the scene 
manager and builds a list of potentially visible objects according to the current camera 
settings. For example, in a large game world, only objects, whose bounding volumes are 
inside or intersect with the camera view frustum, need to be in the list. A camera view 
frustum is an enclosed sub space of the game world. We call this procedure object level 
clipping. This will effectively exclude large number of objects as early in the render pipeline 
as possible. Then for each objects, the game engine calls its render method which continues 
the render pipeline downwards. There, the object may need to retrieve polygon and texture 
data, etc from the asset manager, and then it may optionally do some view culling and view 
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occlusion tests with the data in the hope to further minimize polygons sent to the next render 
pipeline stage. Before we pass polygon data (i.e. triangle primitives, etc) down to the GPU 
pipeline, we must prepare them as formatted buffer objects and setting up the GPU pipeline 
states and shader programs. After data is sent to GPU, they will be processed in parallel with 
CPU, following the built-in stages in GPU. Since DirectX 8.0, most stages of the GPU are 
programmable by engine programmers. The programs executed by GPU are called shader 
programs. They are mainly a simple function with standard INPUT and OUTPUT format. 
Since shader programs are executed by GPU in parallel with CPU, they only have access to 
data in the function parameters, GPU constant tables, and video memory. 
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Figure 5.1 Typical rendering pipeline in 3D engine 

The goal of 3D render pipeline is to make data processing parallel between CPU(s) and 
GPU, and process as little data as possible to render a game scene. Since we have little control 
of the render pipeline on the GPU, the main goal is to optimize the part on the CPU. 

A good 3D rendering pipeline on the CPU side can be divided into clipping, culling, 
occluding and computing the right level of detail (LOD). Different game genres may 
emphasize certain aspects more than others to reach the desired performance. Generally, it 
falls into three categories: outdoors, indoors, and planetary (outer space). The first two are 
common. We can formally define an indoors rendering algorithm as one software piece that 
optimizes the rendering pipeline by quickly determining occlusions (in addition to clipping 
and culling) in the level geometry, thus allowing interactive rendering. This draws a 
distinction with outdoors rendering methods (explained in later sections), which will in turn 
emphasize LOD processing because view distances will be large. This characterization does 
not imply that indoors algorithm does not use LOD, but it is the occlusion component that 
will be dominant in the optimization. Regardless of the optimization goals, object level 
clipping always comes first. In the architecture presented in this chapter, we will only look 
into the object level clipping.  

5.1.2 Object Level Clipping with Bounding Volumes 
Object level clipping is a technique to remove an entire 3D object at an early stage of the 
rendering pipeline. Recall in the scene management chapter, we associated each scene objects 
with a view clipping object that contains pre-calculated bounding volume information. It is 
used in object level clipping. A pseudo code is given below. Note that we first treat the view 
clipping object and the camera view frustum as spheres for rough intersection test and then 
perform more accurate collision test using the actual shape of the two objects. After running 
this program, we will have a list of potentially visible objects, which will be sorted and then 
passed down the render pipeline for further optimization and the actual rendering.  
Traverse quad tree scene graph with the camera frustum{ 

For each sceneObject in the potentially visible terrain quad{ 
clippingObject = sceneObject GetViewCullingObject() 
if( (Test Collision (clippingObject as a 3D sphere, camera frustum as a 3D sphere) == true) and

(Test Collision (clippingObject, camera frustum) == true) ) 
{ 

Add sceneObject to render object list 
} 

} 
} 

5.1.3 Object Visible Distance 
The view frustum in an outdoor game may span several hundred meters. There is no need 

to draw everything within this region, especially when the scene contains many small objects 
that are barely visible in the distance. To avoid drawing small objects in the distance, we can 
calculate the object visible distance for different object sizes. Objects are only drawn when 
the object to camera distance is smaller than this value. This works even better when 
combined with fog effect and some alpha animation on the object. For example, when an 
object first appears at this distance, we play a quick animation on the object’s alpha color 
from fully transparent to its original value and vice versa. 
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We can easily combine this step to the object level clipping code in the previous section. 
Instead of using the radius of the camera frustum for the rough collision test, we use another 
sphere with center at the camera origin and an object visible distance (VisibleRadius) 
calculated as below.  

VisibleRadius (R) = max( (fFar-Pow2(fNear*tanf(m_fCullingAngle))*density*(fFar-
fNear)/(R*R)), fNear); 

Let R be the radius of the object. Let fNear be the near plane distance of the fog and fFar is 
the far plane distance of the fog. m_fCullingAngle is preset to some predefined value, such as 
5 degrees or D3DX_PI/36.  We will allow an object of height fNear*tan(m_fCullingAngle) to 
pop out from fNear distance from the camera eye. 

In the concise form, the object visible distance v(R) = f – k / (R * R), where f, k are some 
pre-calculated values. Figure 5.2 shows the curve of v(R). 

 

 Figure 5.2 Object Level Culling: object visible distance function 

The formula ensures that the pixel changes of any newly popped out object are roughly the 
same for objects of all sizes. I.e. small objects will only be drawn when they are very close to 
the camera, whereas large objects will be drawn as soon as they are in front of the far fog 
plane.  

5.1.4 Coordinate System for Render Pipeline 
One tricky thing in the render pipeline is the coordinate system in which to perform clipping, 
culling, occlusion testing and finally outputting to GPU. The world coordinate system seems 
to be the natural choice, but consider the other choices. Below is list of coordinate systems. 

- World coordinate system: if the game designer uses meters as the world unit and that 
the size of game world is 40km*40km. Points in world units will fall in the range (-
200000, -200000, -200000) to (200000, 200000, 200000).  

- Local coordinate system: this is usually the coordinate system in model files. The artist 
uses it during 3D modeling. They are not particularly useful and are almost always 
transformed to its parent coordinate system.  
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R 
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- Camera coordinate system: this is the coordinate system with the origin at the current 
camera eye position and axis aligned with the view direction.  

- User defined coordinate system: any other coordinate system.  

In case of world coordinate system, if one uses 32 bits floating point value as vector 
component, there are only 4 or 5 bits left at the world boundary. For example, a player can be 
at position (99999.001, 0, 0); but you can not specify a player at (99999.000001,0,0) as you 
can with (0.000001,0,0).  0.001 meter is generally enough for moving and positioning global 
objects as an entity in the world. But it will not be sufficient for rendering polygon details 
inside the entity. So world coordinate system can not be used by the rendering pipeline unless 
the world size is very small and near the world origin.  

A simple solution is to transform scene objects to the camera coordinate system. This 
effectively solves the floating point inaccuracy problems. However this is not very efficient, 
because the game engine must transform a scene object by a 4x4 matrix before using it in sub-
sequent testing. A better solution is to use a user defined coordinate system, whose origin is 
(or is near to) the camera coordinate system’s origin, and whose axis aligns with the world 
coordination system’s axis. In ParaEngine, we call it a render coordinate system. Scene 
objects in world coordinate system can be transformed to this new coordinate system by 
simply offseting its position component.  Of course, we need to transform the camera to this 
render coordinate system as well. By using the render coordinate system, all vertex positions 
processed both by CPU and GPU are near the origin and the position components of all 
matrices used by CPU and GPU are also near the origin. This can effectively reduce floating 
point inaccuracy issues during matrix and vector math. 

5.1.5 Hardware Occlusion Testing 
In the old days, occlusions are done mostly by software (i.e. on CPU). GPU uses Z-buffer or 
depth buffer for the final occlusion testing. And it is usually considered inefficient for a game 
engine to rely entirely on hardware (i.e. GPU) for occlusion testing.  

Things have changed as GPU becomes increasingly fast. It is now even advised to throw 
everything to GPU, instead of wasting precious CPU time. Hardware occlusion testing is a 
newly supported function of GPU for doing the difficult job of occlusion testing. The idea is 
this: if an object contains dense polygons, yet has relatively small bounding volume, we can 
send the bounding volume to GPU and ask the GPU if it is visible. If the GPU says yes, we 
can continue sending the full polygon soup to the render pipeline; otherwise we can skip the 
object.  In case the bounding volume is not accurate enough for occlusion testing, we can 
even send the complete polygon soup to GPU for occlusion testing.  

In practice, we use the occlusion query results from the previous frames to decide whether 
to draw an object in the current frame. This is because a query is available only when the 
GPU have finished drawing the object. Thus, getting the query result of an object rendered in 
the same frame will usually cause the CPU to wait for the GPU to complete. Yet, the 
occlusion query results from previous frames are always available in the current frame. So, if 
we assume that game scenes are continuous between frames, we can use the previous 
occlusion query results to decide the visibility of objects in the current frame, without 
compromising parallelism between CPU and GPU.  
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This technique is very useful if mixed with other techniques in the render pipeline. For 
example, we can design the rendering pipeline as follows. Divide all potentially visible 
objects in to two lists: the first list contains solid objects that are close to the camera or having 
a big view angle; the second list contains transparent objects or objects that are both far away 
from the camera and having a small view angle. Both lists are sorted by their bounding 
volume’s distance to the camera eye position. We then render objects in the first list from 
front to back with occlusion testing; and then render objects in the second list from back to 
front also with occlusion testing.  

Figure 5.3 shows occlusion test using object’s bounding volume (in this case, it is OBB). 
The left three objects are in the first list; the four objects on the right in blue color are in the 
second list. The order of drawing those objects is given by numbers.  

 

Figure 5.3 Hardware Occlusion Testing using bounding box 

5.2 Building the Render Pipeline 
Combining method discussed in the last section, we will now take a look at the pipeline used 
in ParaEngine. The pipeline is directly built into the scene manager (CSceneObject) in its 
member function AdvanceScene(). The following pseudo code shows the rendering pipeline.  
Render scene (RENDER_TIMER){ 

Set up scene state: camera frustum, rendering device and other user parameters, etc 
 
Draw the sky with depth buffer off 
 
Render the outdoor terrain { 

Build LOD terrain based on current camera settings.  
Draw the global terrain 

} 
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For each sceneObject in the potentially visible terrain quad{ 
clippingObject = sceneObject GetViewCullingObject() 
calculate ViewRadius of the current clipping object 
if( (Test Collision (clippingObject as a 3D sphere, sphere with ViewRadius) == true) and 

(Test Collision (clippingObject, camera frustum) == true) ) 
{ 

if(sceneObject is a container){ 
add its child objects to the testing queue 

} 
if(sceneObject is character object){ 

add it to the list_pr_Bipeds 
} 
else if(sceneObject is an ordinary mesh object){ 

fObjectToCameraDist = distance from clipping object  to the camera eye position 
if(sceneObject is solid object that is very near the camera or having a big view angle) { 

add pair<sceneObject, fObjectToCameraDist> to the list_pr_front_to_back 
}else{ 

add pair<sceneObject, fObjectToCameraDist> to the list_pr_back_to_front 
} 

} 
else{ … } 

} 
} 
 
Sort list_pr_front_to_back by fObjectToCameraDist 
Sort list_pr_back_to_front by fObjectToCameraDist 
Sort list_pr_Bipeds by asset type 
 
for each object in list_pr_front_to_back { 

if(hardware occlusion testing with object’s bounding volume is passed){ 
draw object 

} 
} 
for each object in list_pr_back_to_front { 

if(hardware occlusion testing with object’s bounding volume is passed){ 
draw object 

} 
} 
Draw sprite objects {} 

 
for each characterObject in list_pr_Bipeds{ 

characterObject animate(); 
} 
Render character shadows using shadow volumes{  

…only cast shadows on object rendered previously 
} 
for each characterObject in list_pr_Bipeds{ 

characterObject draw(); 
} 
 
Draw missile objects { … } 
Draw the ocean { … } 
Draw particle systems in the scene {…} 
Render dummy objects for debugging purposes 

} 
Generally speaking, we render indoor objects followed by outdoor objects, postponing the 

rendering of any small-sized but high-poly object until larger objects (occluders) have been 
drawn. Shadow receivers are rendered before shadow casters. 
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The transformation from world coordinate system to render coordinate system is performed 
by each view clipping object and each drawable object internally. I.e. the bounding volume 
returned by view clipping object is internally converted to the render coordinate system to 
avoid floating point inaccuracy issue.  

5.3 Shader Program Management 
There are two sets of rendering API supported by DirectX 9. One is for fixed function 

rendering pipeline (FFP), another is for programmable pipeline (PP). In version 10 of DirectX, 
it will only support programmable pipeline, where a game engine must supply all GPU shader 
programs and input streams used for different rendering stages on GPU.  

However, there are some difficulties to support both rendering pipelines in a game engine. 
For backward compatibilities, most present day PC game engine still need to support both. In 
this section, we will describe one way to mix these two pipelines in a game engine. The 
emphasis, however, is on the programmable pipeline, or more specificly shader program 
management.  

5.3.1 Effect File Manager 
To be compatible with DirectX, our shader program is written in HLSL or High Level Shader 
Lanaguage. In DirectX extension library, HLSL file is also called effect files. Here, we 
assume that the reader understands the basics of HLSL, including shader constants, samplers, 
pixel and vertex shader, render passes, techniques and effect states. Such information can be 
found in the DirectX SDK. And we also assume that you understand the standard procedure 
of rendering a simple geometry using a HLSL shader program. Our focus in this section is on 
managing large number of shader programs and how to apply them efficiently on a very large 
amount of renderable scene objects.  

HLSL program can be compiled into assembly code and loaded at run time. In most cases, 
we configure the IDE (Visual Studio) to compile HLSL in to both text and binary formats of 
assembly code. The text version is for human examination, the binary one is used by the game 
engine. We then examine the text assembly code in terms of instruction count, and we also 
need to take care of GPU register usage and whether the code for static and dynamic branch is 
being properly generated. The binary version of assembly code is what will be used by the 
game engine at runtime.  

To compile HLSL program, one can enable custom build options in its build environment 
for all HLSL files and use a HLSL code compiler such as fxc.exe included in the DirectX 
SDK. The fxc compiler is able to generate assembly code in both text and binary format. It is 
common for a game engine to have 10 to 20 or even more HLSL files. They are for different 
scene objects and render options. See Figure 5.4. In ParaEngine, a singleton class called 
CEffectManager is used to manage all shader (effect) files in the game engine.  
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Figure 5.4 Effect Files in a Game Engine 

 The CEffect manager is responsible for three kinds of tasks. The first task is to dynamically 
load/unload effect files and switch between them. The second task is to automatically select 
the proper techniques for different render tasks and graphic hardware. In ParaEngine, the 
effect manager will default to fixed function pipeline if there are no proper techniques in the 
requested shader file.  To be more precise, all effect files in the effect manager have an unqiue 
effect handle, where the handle 0 is reserved for the fixed function pipeline, handle 1-1024 is 
reserved for intenal shader file usage, handle value above 1024 is for any user defined custom 
shaders. The effect manager will automatically default to handle 0, if the requested effect file 
does not contain a valid technique. The third task of the effect manager is to expose a 
collection of functions for setting shared effect states, such as fog, alpha testing, alpha 
blending, texture samplers, and any other game engine specific parameters, etc.  
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Figure 5.5 Effect handle and it association with scene objects 

On the other hand, each renderable scene objects may be associated with an effect handle, 
which can be dynamically changed at runtime by the game logics or multistage rendering 
routines. Recall that in the top level render pipeline, we have batched objects in to several 
render groups. Now for each render group, we will further sort objects by their associated 
effect handles. See Figure 5.5. Switching between shader programs is one of the most time-
consuming operations on GPU. Hence, in a programmable rendering pipeline, we need to 
batch objects by their shader programs to minimize the number of shader switch times.  

5.3.2 Wrapping the Render API 
The centralized effect management scheme as discussed in the previous section also 

provides us a good opportunity and place to wrap the DirectX render API, so that the render 
code elsewhere is version neutral.  Wrapping the fixed function pipeline is not necessary, 
unless you are working on a game engine supporting both OpenGL and DirectX. Wrapping 
the programmable pipeline is fairly easy, we only need to wrap a couple of resource 
submission calls and draw calls in DirectX API; everything else, such as sampler states and 
shader constants, etc, are already wrapped by either the CEffectManager or CEffectFile class.  
Some code samples are given in the code section.  
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5.4 Code and Performance 

5.4.1 Traversing Quad Tree 
The following shows part of the rendering pipeline. It traverses the terrain quad tree to find 
potential visible scene objects. 
Queue<CbaseObject*> queueNodes; 
queue<CTerrainTile*> queueTiles; 
CTerrainTile* pTile = (CTerrainTile*)(&m_tileRoot); 
bool bQueueTilesEmpty = false; 
while(bQueueTilesEmpty == false) 
{ 

/// add other tiles 
for(int i=0; i<MAX_NUM_SUBTILE; i++){ 

if(pTile->m_subtiles[i]){ 
/// rough culling algorithm using the quad tree terrain tiles test against a sphere round the eye
if(pTile->m_subtiles[i]->TestCollisionSphere(& (vViewCenter), fViewRadius)){ 

queueTiles.push( pTile->m_subtiles[i] ); 
} 

} 
} 
/// go down the quad tree terrain tile to render objects 
if(queueTiles.empty()){ 

bQueueTilesEmpty = true; 
} 
else 
{ 

/// We will not push objects in the current terrain tile to a queue object for further view clipping. 
pTile = queueTiles.front(); 
queueTiles.pop(); 
 
/// add all solid objects to the queue for further view clipping test 
list< CBaseObject* >::iterator itCurCP, itEndCP = pTile->m_listSolidObj.end(); 
for( itCurCP = pTile->m_listSolidObj.begin(); itCurCP != itEndCP; ++ itCurCP){ 

if((*itCurCP)->CheckVolumnField(OBJ_VOLUMN_PERCEPTIVE_RADIUS) == false)  
queueNodes.push((*itCurCP)); 

} 
if(pTile->m_listBipedVisitors.empty() == false){ 

/// add all visitor biped objects to the queue. 
list< CBipedObject* >::iterator itCurCP1, itEndCP1 = pTile->m_listBipedVisitors.end(); 
for( itCurCP1 = pTile->m_listBipedVisitors.begin(); itCurCP1 != itEndCP1; ++ itCurCP1){ 

queueNodes.push((*itCurCP1)); 
} 

} 
/// add all free space objects to the queue 
list< CBaseObject* >::iterator itCurCP, itEndCP = pTile->m_listFreespace.end(); 
for( itCurCP = pTile->m_listFreespace.begin(); itCurCP != itEndCP; ++ itCurCP){ 

queueNodes.push((*itCurCP)); 
} 

} 
 

/// For any potentially visible objects in the queue,  
// perform further object-level clipping test, and draw them if the test passes. 
while(!queueNodes.empty()){ 

// pop up one object 
CBaseObject* pObj = queueNodes.front(); 
CBaseObject* pViewClippingObject = pObj->GetViewClippingObject(); 
queueNodes.pop(); 
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ObjectType oType =  pObj->GetMyType(); 
bool bDrawObj, bDrawChildren; 
 
{ 
…// object level clipping code here 
…// set bDrawChildren 
} 
 
/// push its child objects to the queue 
if(bDrawChildren){ 

list< CBaseObject* >::iterator itCurCP, itEndCP = pObj->GetChildren()->end(); 
for( itCurCP = pObj->GetChildren()->begin(); itCurCP != itEndCP; ++ itCurCP){ 

queueNodes.push(* itCurCP); 
} 

} 
} //while(!queueNodes.empty()) 
 

}//while(!queueTiles.empty()) 
… // lots of code omitted 

5.4.2 Render Coordinate System Transformation 
The following code shows how render coordinate system is used during object level clipping 
and object rendering. 
D3DXVECTOR3 CSceneObject::GetRenderOrigin(){ 
 return m_vRenderOrigin; 
} 
 
D3DXVECTOR3 CBaseObject::GetWorldPosition(){ 
 D3DXVECTOR3 vPos; 
 GetPosition(&vPos); 
 return vPos; 
} 
 
D3DXVECTOR3 CBaseObject::GetRenderOffset(){ 
 D3DXVECTOR3 vPos; 
 GetPosition(&vPos); 
 return (vPos-CGlobals::GetScene()->GetRenderOrigin()); 
} 
 
void CViewCullingObject::GetRenderVertices(D3DXVECTOR3 * pVertices, int* nNumber) 
{ 
 int nNum = 8; 
 *nNumber = nNum; 
 pVertices[0].x = m_vMin.x;  pVertices[0].y = m_vMin.y;  pVertices[0].z = m_vMin.z; 
 … // code setting pVertices[1] to pVertices[6] omitted 
 pVertices[7].x = m_vMax.x; pVertices[7].y = m_vMax.y; pVertices[7].z = m_vMin.z; 
  
 D3DXMATRIX mat = m_mWorldTransform; 
/** this will make the components of world transform matrix consistent (i.e. of the same magnitude.), 
hence it will correct floating point calculation imprecision.*/ 
 D3DXVECTOR3 vOrig = CGlobals::GetScene()->GetRenderOrigin(); 
 mat._41 -= vOrig.x; 
 mat._42 -= vOrig.y; 
 mat._43 -= vOrig.z; 
 
 for(int i=0; i<nNum;i++){ 
  D3DXVec3TransformCoord( &pVertices[i], &pVertices[i], &mat); 
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 } 
} 
 
HRESULT CMeshObject::Draw( SceneState * sceneState){ 
 … // code omitted here 
 // using the render coordinate system to render mesh 
 D3DXVECTOR3 vPos = GetRenderOffset(); 
 D3DXMatrixTranslation( & mx, vPos.x, vPos.y, vPos.z); 
 mxWorld = m_mxLocalTransform* mx; 
 
     pd3dDevice->SetTransform( D3DTS_WORLD, & mxWorld ); 
 
 … // draw mesh here 
} 

5.4.3 Hardware Occlusion Testing 
The code shown here is written with DirectX 9.0C using fixed function pipeline. 
…// the following code is executed for every object in the post rendering list. 
if(m_bEnableOcclusionQuery && d3dQuery){ 

/** Occlusion culling algorithm is used after drawing all solid objects. */ 
CBaseObject* pViewClippingObject = (*itCurCP).m_pRenderObject->GetViewClippingObject(); 
 
// Start the query 
pd3dDevice->SetRenderState( D3DRS_ZWRITEENABLE, FALSE ); 
d3dQuery->Issue( D3DISSUE_BEGIN ); 
// Make sure that no pixels get drawn to the frame buffer 
pd3dDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, TRUE ); 
pd3dDevice->SetRenderState( D3DRS_SRCBLEND,  D3DBLEND_ZERO ); 
pd3dDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_ONE ); 
// Render the occlusion object: in this case, it is the bounding box of the clipping object 
pViewClippingObject->DrawOcclusionObject(&sceneState); 
pd3dDevice->SetRenderState( D3DRS_ALPHABLENDENABLE, FALSE ); 
pd3dDevice->SetRenderState( D3DRS_SRCBLEND,  D3DBLEND_SRCALPHA ); 
pd3dDevice->SetRenderState( D3DRS_DESTBLEND, D3DBLEND_INVSRCALPHA ); 
// End the query, get the data 
d3dQuery->Issue( D3DISSUE_END ); 
 
pd3dDevice->SetRenderState( D3DRS_ZWRITEENABLE, TRUE ); 
// Loop until the data becomes available 
DWORD pixelsVisible = 0; 
while (d3dQuery->GetData((void *) &pixelsVisible,  

sizeof(DWORD), D3DGETDATA_FLUSH) == S_FALSE) 
{}; 
 
if( pixelsVisible > 0 ){ 
 // render the object.  
 (*itCurCP).m_pRenderObject->Draw(&sceneState); 
 ++ itCurCP; 
}else{ 
 // if not visible, remove from the list. 
 itCurCP = sceneState.listPRTransparentObject.erase(itCurCP); 
 nOccludedObjCount++; 
} 

} 

5.4.4 Effect Management 
Header code of effect manager.  
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/** manager all effects file used by the game engine.*/ 
 class EffectManager: public AssetManager <CEffectFile> 
 { 
 public: 
  EffectManager(); 
  ~EffectManager(); 
 
  CEffectFile* GetEffectByHandle(int nHandle); 
 
  CEffectFile* MapHandleToEffect(int nHandle, CEffectFile* pNewEffect); 
 
  virtual bool DeleteEntity(AssetEntity* entity); 
  virtual void InitDeviceObjects(); 
  virtual void DeleteDeviceObjects(); 
  virtual void RestoreDeviceObjects(); 
  virtual void InvalidateDeviceObjects(); 
  void Cleanup(); 
 
  /** get the shadow map object. */ 
  CShadowMap* GetShadowMap(); 
  /** get the glow effect object. */ 
  CGlowEffect* GetGlowEffect(); 
 
  /** Start effect by handle. It set the proper technique of the effect. 
  the vertex declaration will also be set or created.  
  @param nHandle: the effect handle. 
  @param pOutEffect: pointer to retrieve the effect object which is currently selected. 
  @return: return true if succeeded. 
  */ 
  bool BeginEffect(int nHandle, CEffectFile** pOutEffect = NULL); 
  /** end the effect, this function actually does nothing. */ 
  void EndEffect(); 
 
  /** predefined vertex declaration. */ 
  enum VERTEX_DECLARATION 
  { 
   S0_POS_TEX0, // all data in stream 0: position and tex0 
   S0_POS_NORM_TEX0, // all data in stream 0: position, normal and tex0 
   S0_S1_S2_OCEAN_FFT, // for FFT ocean 
   S0_POS_NORM_TEX0_TEX1, // all data in stream 0: position, normal tex0 and tex1 
   MAX_DECLARATIONS_NUM, 
  }; 
 
  /** Get declaration by id 
  @param nIndex: value is in @see VERTEX_DECLARATION  
  @return: may return NULL.*/ 
  LPDIRECT3DVERTEXDECLARATION9 GetVertexDeclaration(int nIndex); 
  /** Set declaration by id 
  @param nIndex: value is in @see VERTEX_DECLARATION  
  @return: return S_OK if successful. .*/ 
  HRESULT SetVertexDeclaration(int nIndex); 
 
  /** load the default handle to effect file mapping. 
  @param nLevel: the higher this value, the more sophiticated shader will be used.  
  The default value is 0, which is the fixed programming pipeline without shaders. 
  10, VS PS shader version 1 
  20, VS PS shader version 2 
  30, VS PS shader version 3 
  please note that any user defined mapping will be cleared.  
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  */ 
  void LoadDefaultEffectMapping(int nLevel); 
  enum EffectTechniques 
  { 
   /// normal rendering 
   EFFECT_DEFAULT = 0,  
   /// shadow map generation technique 
   EFFECT_GEN_SHADOWMAP, 
   /// rendering the model with shadow map 
   EFFECT_RENDER_WITH_SHADOWMAP, 
   /// fixed function pipeline 
   EFFECT_FIXED_FUNCTION, 
  }; 
  /** set all effect files to a specified technique.If the effect does not have the specified technique 
  nothing will be changed.  
  @param nTech: the technique handle. */ 
  void SetAllEffectsTechnique(EffectTechniques nTech); 
  /** current technique in the effect file*/ 
  EffectTechniques GetCurrentEffectTechniqueType(); 
 
  int GetCurrentTechHandle(); 
  CEffectFile* GetCurrentEffectFile(); 
 
  ////////////////////////////////////////////////////////////////////////// 
  // 
  // The following functions set or retrieve global effect states which are shared by all effect files. 
  // They are designed to look like the fixed pipeline programming interface of DirectX9 
  // 
  ////////////////////////////////////////////////////////////////////////// 
   
  HRESULT SetMaterial(D3DMATERIAL9 *pMaterial); 
  HRESULT SetLight(DWORD Index, CONST D3DLIGHT9 *pLight); 
  HRESULT LightEnable(DWORD Index, BOOL Enable); 
  HRESULT SetRenderState(D3DRENDERSTATETYPE State, DWORD Value); 
  HRESULT SetTexture(DWORD Stage, LPDIRECT3DBASETEXTURE9 pTexture); 
  HRESULT SetTransform(D3DTRANSFORMSTATETYPE State, CONST D3DMATRIX *pMatrix); 
  HRESULT GetTransform(D3DTRANSFORMSTATETYPE State,D3DMATRIX * pMatrix); 
 
  /** Get the current world transformation matrix which is used by the effect. 
  @see GetTransform()*/ 
  D3DXMATRIX& GetWorldTransform(); 
  D3DXMATRIX& GetViewTransform(); 
  D3DXMATRIX& GetProjTransform(); 
 
  /** update the transformation for both the fixed and programmable pipeline.  
  @param pWorld: world transformation, only set if it is true,  
  @param pView: camera view transformation, only set if it is true,  
  @param pProjection: camera projection transformation, only set if it is true, */ 
  void UpdateD3DPipelineTransform(bool pWorld, bool pView,bool pProjection); 
 
  /** enable or disable fog.*/ 
  void EnableFog(bool bEnabled); 
 
  /** clip plane state */ 
  enum ClipPlaneState{ 
   ClipPlane_Disabled, 
    ClipPlane_Enabled_WorldSpace, 
    ClipPlane_Enabled_ClipSpace, 
  }; 



 

 70 

 
     void EnableClipPlane(bool bEnable); 
 
  void SetClipPlane(DWORD Index, const float * pPlane, bool bClipSpace); 
 
  // … many game engine specific render state function ignored here 
 private: 
    /** whether use lighting: global sun light and local point lights */ 
  bool m_bEnableLocalLighting; 
  /** whether use fog*/ 
  bool m_bUseFog; 
  /** if true, setting the alpha testing parameter of the effect files will have no effect. */ 
  bool m_bDisableD3DAlphaTesting; 
  /** whether using shadow map */ 
  bool m_bUsingShadowMap; 
  /** whether full screen glow effect is used. */ 
  bool m_bIsUsingFullScreenGlow; 
  /** glowness controls the intensity of the glow in the full screen glow effect.  
  0 means no glow, 1 is normal glow, 3 is three times glow. default value is 1. */ 
  D3DXCOLOR m_colorGlowness; 
  /** the glow technique to use. */ 
  int m_nGlowTechnique; 
 
  /** if true, setting the culling mode of the effect files will have no effect. */ 
  bool m_bDisableD3DCulling; 
 
  ClipPlaneState m_ClipPlaneState; 
  bool   m_bClipPlaneEnabled; 
  static const int MaxClipPlanesNum = 3; 
  D3DXPLANE m_ClipPlaneWorldSpace[MaxClipPlanesNum]; 
  D3DXPLANE m_ClipPlaneClipSpace[MaxClipPlanesNum]; 
 
  CShadowMap* m_pShadowMap; 
  CGlowEffect* m_pGlowEffect; 
 
  /** all vertex declarations*/ 
  LPDIRECT3DVERTEXDECLARATION9 m_pVertexDeclarations[MAX_DECLARATIONS_NUM]; 

// … several game engine specific class members ignored here 
 }; 
 

5.4.5 Performance Discussion 
The rendering pipeline presented in this chapter is effective for both outdoor and indoor game 
scenes. In a hybrid game engine, the scene objects may be ordinary mesh objects, such as 
trees, stones, tables, bottles, etc; or characters and creatures with dense polygons; or large 
meshes with indoor rooms, such as camps, buildings and castles, etc. When rendering large 
mesh objects, complex hidden surface removal algorithm is usually applied in order to send 
fewer polygons to GPU. Popular algorithms are BSP, Octree, Portal Rendering, etc. However, 
as GPU is becoming increasingly powerful, it is now possible to send an entire moderate-
sized mesh to GPU for occlusion testing and rendering. This not only saves CPU times, but 
also makes level editing easier, because it has little constraints and no human intervention 
when making 3D models or designing game levels. 

To test the performance, we have performed a test as follows. 
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- Select a hybrid game scene with both indoor and outdoor objects 

- (1) Render the scene using solely object level clipping and hardware occlusion testing 

- (2) Render the scene using BSP based software occlusion testing for indoor objects. 

Method (2) does not exhibit higher performance than (1) with NVIDIA 6800 GPU. Figure 5.6 
shows the game scene we have chosen.  

 

Figure 5.6 Hardware Occlusion Testing using bounding box 

5.5 Summary and outlook 
Rendering pipeline is the most important and distinguishing component of a 3D engine. The 
design of a rendering pipeline depends on game requirement and hardware architecture. It is 
common for engine programmers to rewrite the rendering pipeline several times, during the 
development of a game engine or a specific game title. 

We think that there is no official version of a general rendering pipeline. Engine 
programmers have the freedom to upgrade it as new graphics functions are added. However, 
in the design of a rendering pipeline, one should avoid intertwining it with other game engine 
modules, such as AI, physics and scripting.  

Computer graphics hardware evolves very fast and it causes the software architecture of a 
game engine to evolve as well. For example, the evolutionary BSP based scene management 
is losing popularity with modern hardware; whereas Octree and Portal-based rendering are 
gaining popularity. On the other hand, GPU memory is getting cheaper; 2GB video memory 
will soon become common. Multi-core computer is getting in, the new Xbox 360 already have 
two CPUs. Parallel programming may soon become common in next generation game engine. 
Microsoft supports OpenMP (a parallel programming) extension to C++ in visual studio 2005. 
Although this will not bring radical changes to the architecture of 3D engine, but it shows 
how a computer game engine evolves with incremental advancement in computer hardware.  
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Techniques we used today may be outdated at the time they are used for the actual game. 
So, agree with us or not, unless you are programming for a specific game title or doing 
specific research, we do not advise you to spend too much time on eye-catching graphics 
effects. This will result in lots of useless code in your rendering pipeline and many unused 
peripheral tools created for the modelers. In case you are extending your 3D engine, always 
foresee as much as possible. For example, you should be able to predictive the mainstream 
GPU and CPU specifications in the next 1 or 2 years and stick to it when extending your 
engine.  
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Chapter 6 Special Scene Objects 

This chapter covers the design and implementation of several special scene objects which are 
too trivial to be put in separate chapters. This chapter is written for programmers mostly. 

6.1 Sky 
In a game engine, the sky background is rendered as an ordinary mesh object with Z-buffer 
disabled and origin fixed at the current camera eye position. The sky mesh object is usually a 
box, a dome or a plane, depending on the game requirement. The size of the sky mesh is 
arbitrary (unit size is fine), but since it moves with the camera, it will give the illusion of a 
sky background in the infinite distance. For more information about the sky effect please read 
the Fog and Sky section in Chapter 11. 

6.2 Sun and Sun Light 
The sun is modeled by a special global object called (CSunLight). It contains parameters for 
the sun color, directions, and light scattering data, time of day, etc. The sun direction is 
related to the time of day.  Other scene objects can query the sun object for its current 
parameters. For example, we can take the sun parameter in to consideration when rendering 
the fog; and take the sun direction in to consideration when rendering shadows, and takes the 
scattering data in to consideration when rendering ocean reflections and refractions. If the 
game engine has a simulated weather system, it may include the sun object as its member. 
The following is the header file for the sun object.  
class CLightScatteringData{ 
private: 
 float m_henyeyG; 
 float m_rayleighBetaMultiplier; 
 float m_mieBetaMultiplier; 
 float m_inscatteringMultiplier; 
 float m_extinctionMultiplier; 
 float m_reflectivePower; 
 sLightScatteringShaderParams m_shaderParams; 
public: 
 ..// functions omitted 
}; 
/** 
* Modeling the global sun and its directional light 
*/ 
class CSunLight  
{ 
public: 
 CSunLight(); 
 ~CSunLight(); 
private: 
 D3DLIGHT9 m_light; 
 float  m_seconds; /// how many seconds pasted since the last record 
 float  m_fYaxisRotation; 
 float  m_fMaxAngle; 
 float  m_fCurrentAngle;/// in the range [-m_fMaxAngle, +m_fMaxAngle] 
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 float  m_fDayLength; 
 D3DXCOLOR m_colorSun; /// color of the sun 
 CLightScatteringData m_LightScatteringData; 
private: 
 void RecalculateLightDirection(); 
public: 
 D3DLIGHT9* GetD3DLight(){return &m_light;} 
 /// set time of day in seconds 
 void SetTimeOfDay(float time){m_seconds = time;} 
 /// get time of day in seconds 
 float GetTimeOfDay(){return m_seconds;} 
 /// set position of the time 
 void SetPostion(const D3DXVECTOR3& pos){m_light.Position = pos;}  
 /// advance time is in seconds 
 float AdvanceTimeOfDay(float timeDelta); 
 /// get the sun color 
 D3DXCOLOR GetSunColor(){return m_colorSun;} 
 /// get the sun direction vector 
 D3DXVECTOR3 GetSunDirection(){return m_light.Direction;} 
 /// get the sun Ambient Hue 
 D3DXCOLOR GetSunAmbientHue(){return D3DXCOLOR(m_light.Ambient);} 
 /// get light Scattering Data object 
 CLightScatteringData* GetLightScatteringData(){return &m_LightScatteringData;} 
..// functions omitted 
}; 

6.3 Particle System 
A particle system is usually implemented as a group of animated sprites which are always 
facing the camera.  They are a cheap way to achieve seemingly complex graphics effect, such 
as smokes, fires, magic, etc.  

6.3.1 Defining a Particle System 
An instance of particle system is a list of particles, each of which is represented by current 
position, speed, acceleration (gravity) direction, origin, size, life, maximum lifetime, texture 
tile index, and color. See the specifications in C++ structures as follows. 
Struct Particle { 
 Vec3D pos, speed, down, origin; 
 float size, life, maxlife; 
 int tile; 
 Vec4D color; 
}; 
 
/** it represents the instance of the particle system. */ 
struct  ParticleList{ 
 std::list<Particle> particles; 
 /** whether to use absolute world coordinate system, so that when particles leave its source, it will be 
an independent object in the world coordinate system.*/ 
 bool m_bUseAbsCord:1; 
 /** the last render origin when the update() function is called.*/ 
 Vec3D m_vLastRenderOrigin; 
 /** whether this object is updated in the current frame.*/ 
 bool m_bUpdated:1; 
 /** whether this object should be rendered (in camera frustum) */ 
 bool m_bRender:1; 
 /** current animation */ 
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 int m_anim; 
 /** current frame */ 
 int m_time; 
 /** remaining time for spawning new particles */ 
 float m_rem; 
public: 
 ParticleList():m_bUseAbsCord(true), m_vLastRenderOrigin(0,0,0),m_bUpdated(false),m_anim(0), 
m_time(0), m_rem(0){}; 
}; 

The same particle system can have many particle system instances in the scene. A particle 
system animates particles in all of its particle system instances according to predefined 
animation data and other factors such as gravity. Usually we need a particle editor for artists 
to make animations of a particle system. The following things can be animated in a standard 
particle system: speed, variation, spread, gravity, lifespan, rate, size, color etc. The follow 
code shows a standard particle system data structure. 
class ParticleSystem { 
 Animated<float> speed, variation, spread, lat, gravity, lifespan, rate, areal, areaw, grav2; 
 Vec4D colors[3]; 
 float sizes[3]; 
 float mid, slowdown, rotation; 
 Vec3D pos; 
 TextureEntity* texture; 
 ParticleEmitter *emitter; 
 int blend,order,type; 
 int rows, cols; 
 std::vector<TexCoordSet> tiles; 
 void initTile(Vec2D *tc, int num); 
 bool billboard:1; 
  
 Bone* parent; // to which it is attached in a 3D model 
public: 
 CParaXModel *model; 
 float tofs; 
 /** instances of the particle systems. mapping from the owner object, typically this is a scene object, 
to the particle list of that owner */ 
 map <void*, ParticleList*> m_instances; 
 
 void init(CParaFile &f, ModelParticleEmitterDef &mta, int *globals); 
 
 void update(float dt); 
 /** 
 * @param dt: time delta 
 * @param vOffset: all position and origin will be offset by this value during animation. 
 *  this is usually the render origin offset between two consecutive calls. 
 * @param instancePS: particle system instance. 
 * @return: return true if there is still particles in the instance. 
 */ 
 bool AnimateExistingParticles(float dt, const D3DXVECTOR3& vOffset, ParticleList* instancePS); 
 
 /** get the current particle system instance according to the current scene object.  
 * @param bForceCreate: if this is true, the instance will be created if not found. 
 */ 
 ParticleList* GetCurrentInstance(bool bForceCreate=true); 
 void setup(int anim, int time); 
 /** draw the current instance, if it is a non-absolute particle system instance. */ 
 void draw(); 
 /** draw a specified instance.*/ 
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 void drawInstance(ParticleList* instancePS); 
 /** draw all absolute instances.This is called for batch-rendering global(absolute) particle instances.*/ 
 void drawAllAbsInstances(); 
…// some functions and members omitted 
}; 

The particle system class keeps a list of all of particle system instances. A particle system 
instance is always associated with an owner scene object, such as a missile, a mesh, or a 
character object. The instance may be global or local. Global particles remain in the scene 
even after its owner object is destroyed and they are rendered in the global world coordinate 
system. The scene manager keeps a reference to all active particle systems and their instances. 
It will automatically delete instances that are no longer active in the current frame. It will also 
animate and render these global instances. Particles in global particle systems should have a 
short (finite) life time, in order to clean themselves quickly after its owner is released. 

6.3.2 Animating Particles 
The particle engine mathematics that a particle system uses is very simple. It is a two-step 

process. During each frame move, it first animates existing particles in a particle system 
instance, removing particles that are out of its life time; secondly it generates new particles, 
giving them initial position, speed, etc. The module to spawn new particles is usually called 
particle emitters. We can use different emitters to spawn particles in different patterns.  

Animating an existing particle by a delta time (⊿t) is this: 

Define a function called keyframes as below: 

keyframes(type, animation_id, frame_number) = retrieves a key frame based animation data 
of the given type at the given time and with given animation id. 

Parameter description: 

- time: current frame time of the particle 

- animID: the animation ID of the particle 

- ⊿t: time delta   

- a: acceleration of the particle. 

- s: current position of the particle 

- v: speed of the particle 

- life: current life time of the particle 

- size: size of the particle 

- color: particle color 

- SLOWDOWN, MAXLIFE, MID, SIZE0, SIZE1, SIZE2,COLOR0, COLOR1, 
COLOR2: constants 

Animating particles mathematically: 

a = keyframes(type(a), animID, time)G G
 

s =s+(v+(a ))t t×Δ ×Δ
G G GG

 , if without slowing down factor 
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( )s+(v+(a )) SLOWDOWN lifet e t− ×× Δ × ×Δ
G GG

, if with slowing down factor 

life life t= + Δ  

Define interpolation function f(x,mid,a,b,c) =  

(x/mid) a+(1-x/mid) b, if x mid× × ≤  

(x-mid)/(1-mid) b+(1-(x-mid)/(1-mid)) , if x>mid c× ×  

size = f(life/MAXLIFE, MID, SIZE0, SIZE1, SIZE2)  

color = f(life/MAXLIFE, MID, COLOR0, COLOR1, COLOR 2)  

The following shows the animation code of a particle system.  
bool ParticleSystem::AnimateExistingParticles(float dt, const D3DXVECTOR3& vOffset, ParticleList* 
instancePS){ 
 if(instancePS==NULL)  
  return false; 
 std::list<Particle> & particles = instancePS->particles; 
 
 int manim = instancePS->m_anim; 
 int mtime = instancePS->m_time; 
 float grav = gravity.getValue(manim, mtime); 
 float mspeed = 1.0f; 
 
 std::list<Particle>::iterator it; 
 for ( it = particles.begin(); it != particles.end(); ) { 
  Particle &p = *it; 
  p.speed += p.down * grav * dt; 
 
  if (slowdown>0) { 
   mspeed = expf(-1.0f * slowdown * p.life); 
  } 
  p.pos += p.speed * mspeed * dt; 
  if(instancePS->m_bUseAbsCord) 
  { 
   p.pos += (const Vec3D&)vOffset; 
   p.origin += (const Vec3D&)vOffset; 
  } 
 
  p.life += dt; 
  float rlife = p.life / p.maxlife; 
  // calculate size and color based on lifetime 
  p.size = lifeRamp<float>(rlife, mid, sizes[0], sizes[1], sizes[2]); 
  p.color = lifeRamp<Vec4D>(rlife, mid, colors[0], colors[1], colors[2]); 
 
  // kill off old particles 
  if (rlife >= 1.0f)  
   it = particles.erase(it); 
  else  
   ++it; 
 } 
 return (particles.size() > 0); 
} 
 
void ParticleSystem::update(float dt){ 
 /** get the particle system instance for the current scene object.*/ 
 ParticleList* instancePS= GetCurrentInstance(); 
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 if(instancePS == NULL) 
  return; 
 /// add this particle system to the scene state. so that the scene state will automatically 
 /// maintain the life of this particle system instance. 
 CGlobals::GetSceneState()->AddParticleSystem(this); 
 /// mark as updated instance 
 instancePS->m_bUpdated = true;  
 
 std::list<Particle> & particles = instancePS->particles; 
 
 Vec3D vRenderOriginOffset; 
 D3DXMATRIX mWorld; 
 Vec3D vRenderOrigin; 
 
 if(instancePS->m_bUseAbsCord){ 
  CGlobals::GetRenderDevice()->GetTransform(D3DTS_WORLD, &mWorld); 
  vRenderOrigin = *((Vec3D*)(&(CGlobals::GetScene()->GetRenderOrigin()))); 
   
  vRenderOriginOffset = instancePS->m_vLastRenderOrigin - vRenderOrigin; 
  instancePS->m_vLastRenderOrigin = vRenderOrigin;// update render origin 
 } 
  
 /** animate existing particles.*/ 
 AnimateExistingParticles(dt, (const D3DXVECTOR3&)vRenderOriginOffset, instancePS); 
 
 /** spawn new particles */ 
 if (emitter) { 
  int manim = instancePS->m_anim; 
  int mtime = instancePS->m_time; 
  float frate = rate.getValue(manim, mtime); 
  float ftospawn = (dt * frate / flife) + instancePS->m_rem; 
  if (ftospawn < 1.0f) { 
   instancePS->m_rem = ftospawn; 
   if (instancePS->m_rem<0) instancePS->m_rem = 0; 
  } 
  else { 
   int tospawn = (int)ftospawn; 
   instancePS->m_rem = ftospawn - (float)tospawn; 
   for (int i=0; i<tospawn; i++) { 
    Particle p = emitter->newParticle(manim, mtime); 
    if(instancePS->m_bUseAbsCord){ 
 // transform to world coordinate system, suppose that the world transform is in device already set 
     D3DXVECTOR4 tmp; 
     D3DXVec3Transform(&tmp, &p.pos, &mWorld); 
     p.pos.x = tmp.x; 
     p.pos.y = tmp.y; 
     p.pos.z = tmp.z; 
      
     D3DXVec3Transform(&tmp, &p.origin, &mWorld); 
     p.origin.x = tmp.x; 
     p.origin.y = tmp.y; 
     p.origin.z = tmp.z; 
    } 
    // sanity check: 
    if (particles.size() < MAX_PARTICLES) particles.push_back(p); 
   } 
  } 
 } 
} 
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Many kinds of emitters can be used to spawn new particles for a particle system. The 
following shows a simple circle emitter that randomly emits particles from an origin in all 
directions.  
Particle CircleEmitter::newParticle(int anim, int time){ 
 Particle p; 
 float l = sys->areal.getValue(anim, time); 
 float w = sys->areaw.getValue(anim, time); 
 float spd = sys->speed.getValue(anim, time); 
 float var = sys->variation.getValue(anim, time); 
  
 float t = randfloat(0,2*PI); 
 Vec3D bdir(0, l*cosf(t), w*sinf(t)); 
 p.pos = sys->pos + bdir; 
 p.pos = sys->parent->mat * p.pos; 
 if (bdir.lengthSquared()==0) p.speed = Vec3D(0,0,0); 
 else { 
  Vec3D dir = sys->parent->mrot * (bdir.normalize()); 
  p.speed = dir.normalize() * spd * (1.0f+randfloat(-var,var));   
 } 
 p.down = sys->parent->mrot * Vec3D(0,-1.0f,0); 
 p.life = 0; 
 p.maxlife = sys->lifespan.getValue(anim, time); 
 p.origin = p.pos; 
 p.tile = randint(0, sys->rows*sys->cols-1); 
 return p; 
} 

6.3.3 Drawing Particles 
Many scene objects such as mesh and creatures may contain particles system. However, the 

drawing of particle systems is usually postponed until most other scene objects have been 
drawn. The scene manager maintains a list of active particle systems in the scene and the 
rendering pipeline will draw them in a batch. When scene objects containing particle systems 
are rendered in the rendering pipeline, their associated particle systems will not be 
immediately drawn, instead they will be put to the particle system list maintained by the scene 
manager. Recall the rendering pipeline in Chapter 5. We render all particle systems in the 
scene last in a batch.  

Each particle is rendered as a sprite facing the camera. There are many ways to do so. Some 
GPU supports point sprite, so that one can send particles to GPU as points. Alternatively, you 
can compute the object facing by CPU and render particles as quads (two triangles) in the 
traditional way. This will give you more freedom on the way a particle is rendered. Perhaps, 
writing your own shaders for particle rendering is a better choice which combines the speed 
of GPU sprite method and the flexibility of the CPU quad method. One can accelerate particle 
rendering by using the face normal of the gravity point for all particles which in a particle 
system instance. Figure 6.1 shows the idea and Figure 6.2 is our rendering result using this 
approximated method. 
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Figure 6.1 Particle rendering with approximated facing using center of mass 

 

Figure 6.2 Particle Systems in Games 
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6.4 Weather System 
We will end this chapter by putting functionalities introduced in this chapter together to a 
game module called weather system. Figure 6.3 shows components of a weather system and 
game modules which are related to the weather in the game world. 

 

Figure 6.3 Weather system 
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Chapter 7 Picking 

Picking is about casting a 3D ray (origin, direction, length) and finding objects which 
intersect with the ray. Information such as the intersection point and intersected face normal 
can be returned on demand. This chapter focuses on the implementation and different uses of 
picking in a game engine. The most common use is to find the scene object that intersects 
with the user’s mouse cursor. In a 3D game, the screen position (x,y) of the mouse cursor is 
first converted to a 3D ray using the current camera and projection settings; then this 3D ray 
will be used to pick out the nearest scene object that intersects with it. 

7.1 Foundations 

7.1.1 Background 
In the old days, ray picking is a fundamental component of a game engine. It provides a ray 
based sensor for querying the game world. A number of game engine modules, such as 
physics, camera, and AI, depend on picking functions to get information about the game 
world. For example, the physic module (imaging a flying missile) use ray based sensors to 
detect obstacles ahead and terrain height positions beneath. The camera uses ray based 
sensors to detect if it is very close to a physical surface and should move way from it. An 
intelligent character uses a group of sensor rays to deduct terrain and walls in its vicinity. Of 
course the most common application is mouse picking on 3D scene objects.  

The data structure we discussed for storing scene objects (see Chapter 4) are also 
optimized for fast ray picking. For example, BSP tree is ideal for accuracy ray picking at 
triangle level. Quad-tree and Octree can also perform ray picking very fast at the object level.  

As technology evolves, we have a few other options to “touch” objects in the game world, 
such as using a bounding sphere or box instead of a ray. Moreover, this group of collision 
detection functionalities has been elevated to a new level of game physics, which involves 
rigid body dynamics simulation and collision detection of any shapes. As we will see in later 
chapters, game physics nowadays are implemented as middleware or an independent module, 
which usually has its own internal data presentation.  However, sometimes, we can not rely 
solely on a separate game physics module for the following reasons: 

- Data duplications: we will have two duplicate copies of game data (such as a mesh) in 
two file formats: one for physics and one for rendering. For example, we do not like the 
global terrain mesh to be duplicated in a physics simulation middleware. 

- High level collision detection: sometimes we do not need collision information at the 
triangle level. Instead, we only need to perform collision detection in object level. For 
example, mouse ray picking is usually an object level task.  

- Special game requirement: a general physics middleware can not provide everything 
we need for a specific game title. For example, we may want some mesh to change 
shapes (morphing) or dig holes on mesh surfaces, etc, while still providing real time 
collision detection for them. Such things can not be effectively achieved through a 
unified data structure provided by the physics middleware.  
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To sum up, a game engine usually needs to combine several different implementations to 
achieve the required collision detection tasks in a diverse game world. In ParaEngine, the 
global terrain, the ocean manager, the physics engines and the scene picking function all 
provide similar collision detection functions for their governed objects. Scene picking 
function is usually an implementation for ray based collision detection at object level. We will 
cover this particular one in this chapter.  

7.1.2 Picking Mathematics 
The mathematics used in ray picking involves collision detection between a ray and an 

oriented 3D box. Some math library usually includes collision detections between the 
following basic shapes: ray (and line segment), triangle mesh, sphere, axis aligned bounding 
box (AABB), oriented bounding box (OBB). We advise novice engine programmers to study 
some open source implementation, such as the ODE physics engine. For object level ray 
picking, we will only need collision detection between a ray and an axis aligned bounding box. 
Optionally, we can have a collision detection function between a ray and an oriented 
bounding box.  

The following lists the mathematical presentations of the ray, AABB and OBB.  

- A ray is a half-line P(t) = mOrig + mDir * t, with 0 <= t <= +infinity 

- An AABB is box which is aligned to x,y,z axis. It can be defined by two points (vMin, 
vMax), where vMin.x<=vMax.x, vMin.y<=vMax.y, vMin.z<=vMax.z. It may also be 
defined by the box’s center vCenter and its extents (vExtents) from its center along the 
x, y, z axis.  

- An OBB is a box which is arbitrarily oriented in space. It can be defined as an AABB 
plus a rotation matrix (mRot). 

7.1.2.1 Ray-AABB Collision Detection 
We will study a fast algorithm for ray and AABB overlapping test without returning the 

intersection point or ray-box distance. The algorithm given below will return true if the ray 
intersects the box, and false otherwise. 

Assume ray (mOrig, mDir) and AABB (center, extents). Let D = mOrig-center. Project the 
ray and the AABB to x,y,z planes respectively, we will get a 2D ray and a rectangle centered 
at the origin during each of the three projections. See Figure 7.1. Perform the following tests. 

- Test 1: Consider a box with the same center as the AABB but with extents |D|. The ray 
origin is on the surface of the new box. If the ray points out of the new box and that the 
ray origin is outside AABB, the algorithm terminates and return false. See Figure 7.1. 
This test will quickly exclude outward pointing rays like Ray 1 (red) in the figure. 

- Test 2: Consider the three projections on the x,y,z planes. If in any projection, the ray is 
outside the angle range denoted by the grey arc in the figure, the algorithm terminates 
and return false. This test will further remove rays like Ray 2 (blue) in the figure. 

- If none of the above test returns, it means that the ray intersects with the box and the 
algorithm returns true. 
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Figure 7.1 Ray/AABB Collision Testing: projection to x plane 

Let us now look at the math for the above algorithm.  

Pre-compute:  

 D = mOrig-center  

 |mDir| = abs(mDir) 

Test 1:  

 If x x x x(|D |>extent )  (D mDir 0)∧ × ≥  return false 

 If y y y y(|D |>extent )  (D mDir 0)∧ × ≥  return false 

 If z z z z(|D |>extent )  (D mDir 0)∧ × ≥  return false 

Test 2: 

 If y z z y y z z y|mDir D -mDir D |>(extents |mDir| +extents |mDir| )× × × ×  return false 

 If z x x z x z z x|mDir D -mDir D |>(extents |mDir| +extents |mDir| )× × × ×  return false 

 If x y y x x y y x|mDir D -mDir D |>(extents |mDir| +extents |mDir| )× × × ×  return false 

Final step: return true 

7.1.2.2 Ray OBB Collision 
Ray AABB collision from the previous section can be used for oriented bounding boxes 

(OBB) with minor changes. We just transform both the ray and the OBB to a new coordinate 
system whose center is at the OBB’s center and axis aligned with the OBB. This will turn 
OBB to AABB. Then we can use the same algorithm to test ray-box collision. The 
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transformation from OBB to AABB requires an additional computation to calculate the 
inverse of the rotation matrix of OBB and transform the 3D ray vector by it.  

Assume ray (mOrig, mDir) and OBB (center, extents, mRot). mRot is the rotation matrix.  

Pre-compute:  

 Inverse(mRot) = Inverse of rotational matrix mRot ( -1mRot ) 

 RayNew = ((mOrig-center) Inverse(mRot), mDir  Inverse(mRot))× ×  

 AABB = ( (0,0,0), extents) 

Compute:  

 return using RayNew and AABB collision test. 

We can optimize the above code by the fact that the inverse of a pure rotation matrix is the 
same as the transpose of the matrix. Hence we have 

1 1
3 3 3 3 3 3 3 1 3 1 3 3 1 3 3 3 3 3 3 1( ) (( ) ) ( )T T T T TmRot mRot M V V M V mRot mRot V− −
× × × × × × × × × ×= ∧ × = × ⇒ × = ×

Thus we can avoid calculating the inverse of the rotation matrix and modify the algorithm to 
the following. 

Pre-compute:  

 RayNew = (mRot (mOrig-center), mRot mDir)× ×  

 AABB = ( (0,0,0), extents) 

Compute:  

 return using RayNew and AABB collision test. 

The optimization depends on a game engine’s definition to the rotation matrix in OBB. If it 
is a 3x3 pure rotation matrix, then the modified version can be used. If it is not a pure rotation 
matrix, then we have to use the original one or something in the middle. The rotation matrix 
of OBB used in ParaEngine contains both a pure rotation matrix and a position translation. In 
other words, mRot is a 4x3 matrix.  

7.1.2.3 Mouse Ray Picking 
Mouse ray picking is to find the scene object that intersects with the user’s mouse. In a 3D 
game, the screen position (x,y) of the mouse cursor is first converted to a 3D ray in world 
coordinate system using the current camera and projection settings; then this 3D ray will be 
used to pick the closest scene object that intersects with it.  

The mathematics is fairly simple. Given a 2D position in screen coordinate system (x,y) 
with screen size (width, height) pixels, and a projection matrix (mProj) and camera view 
transform matrix (mView), we will compute the 3D ray with origin and direction (vOrg, vDir) 
as follows: 

Compute the intersection point (vPtScr) between the ray and the view frustum’s near plane 
in screen space as  
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nearvPtScr=( 2 x/width-1, -(2 y/height-1), Z )× × , where Znear is the Z-value of the near 
view-plane.  

Transform vPtScr back to the camera view coordinate system using the inverse of mProj.  
1PrvPtView vPtScr m oj−= × , where the projection matrix mProj has the following format: 

mProj = 
far far near

near far far near

xScale 0 0 0
0 yScale 0 0
0 0 Z /(Z -Z ) 1
0 0 -Z Z /(Z -Z ) 0×

 

We can directly compute 1PrvPtScr m oj−×  as 

( / , / , )x near y near nearvPtView vPtScr xScale Z vPtScr yScale Z Z= × ×  

Or we can use 'vPrView Pr / ( / , / ,1)near x yv View Z vPtScr xScale vPtScr yScale= =  which 

is also a point on the ray. 

Now that we have two points on the ray in the view coordinate system, which is the camera 
origin (0,0,0) and vPtView. Please note that vPtView is also the direction of the ray. Thus we 
can compute the origin and direction of the final ray in world coordinate system by applying 
the inverse of the camera view matrix to them. Thus we have 

Pre-compute:  

mView-1 = inverse of mView 

Compute: 
1 1 1 1vOrg=(0,0,0) mView ( .41, .42, .43)mView mView mView− − − −× =  

The following code shows how a mouse position in 2D screen coordinates can be converted 
to a 3D ray in the world coordinate system. Because it is fairly simple, we will show directly 
by code. 

// nWidth and nHeight is the screen size.  
void CAutoCamera::GetMouseRay(D3DXVECTOR3& vPickRayOrig, D3DXVECTOR3& vPickRayDir, 
POINT ptCursor, UINT nWidth, UINT nHeight) 
{ 
    D3DXMATRIX* pMatProj = GetProjMatrix(); 
     
    // Compute the vector of the pick ray in screen space 
    D3DXVECTOR3 v; 
    v.x =  ( ( ( 2.0f * ptCursor.x ) / nWidth  ) - 1 ) / pMatProj->_11; 
    v.y = -( ( ( 2.0f * ptCursor.y ) / nHeight ) - 1 ) / pMatProj->_22; 
    v.z =  1.0f; 
 
    // Get the inverse of the composite view and world matrix 
    D3DXMATRIX* pMatView = GetViewMatrix(); 
    D3DXMATRIX m; 
    m = (*pMatView); 
    D3DXMatrixInverse( &m, NULL, &m ); 
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    // Transform the screen space pick ray into 3D space 
    vPickRayDir.x  = v.x*m._11 + v.y*m._21 + v.z*m._31; 
    vPickRayDir.y  = v.x*m._12 + v.y*m._22 + v.z*m._32; 
    vPickRayDir.z  = v.x*m._13 + v.y*m._23 + v.z*m._33; 
    vPickRayOrig.x = m._41; 
    vPickRayOrig.y = m._42; 
    vPickRayOrig.z = m._43;  
    D3DXVec3Normalize(&vPickRayDir,&vPickRayDir); 
} 

7.2 Architecture and Code 
Recall that the common base object for scene objects contains a virtual function which returns 
the OBB of its bounding volume. The scene manager can use it to quickly get the scene object 
that intersects with a ray. And we can start ray query with a certain distance. Objects whose 
distance to ray origin is larger than it will be neglected. And we provide a user defined object 
filter object that could reject objects according to some criteria, such as type and name.  

7.2.1 Ray Picking in the Scene 
The following shows the interface for object level ray picking in ParaEngine 

/** it stands for an object intersecting with a ray. it is used for ray picking. */ 
struct PickedObject:public AttachedSceneObject 
{ 
 /// approximated distance 
 float m_fRayDist; 
 /// the smallest value of the object's bounding box's extents 
 float m_fMinObjExtent; 
public: 
 PickedObject(float fRayDist, float fMinObjExtent,  CBaseObject* pObj) 
 :m_fRayDist(fRayDist), m_fMinObjExtent(fMinObjExtent), AttachedSceneObject(pObj){} 
 PickedObject():m_fRayDist(0), m_fMinObjExtent(0), AttachedSceneObject(NULL){} 
}; 
 
bool PickingFilterMesh(CBaseObject* obj){ 
 ObjectType t = obj->GetMyType(); 
 return ( t!= CBaseObject::BipedObject); 
} 
bool PickingFilterBiped(CBaseObject* obj){ 
 ObjectType t = obj->GetMyType(); 
 return ( t== CBaseObject::BipedObject); 
} 
bool PickingFilterNotPlayer(CBaseObject* obj){ 
 return ( CGlobals::GetScene()->GetCurrentPlayer() != obj); 
} 
 
/** 
* Pick object using view clipping object.  
* pick the smallest intersected object which is un-occluded by any objects. Object A is considered 
occluded by object B only if  
* (1) both A and B intersect with the hit ray.  
* (2) both A and B do not intersect with each other.  
* (3) B is in front of A, with regard to the ray origin. 
*  
* this function will ray-pick any loaded scene object(biped & mesh, but excluding the terrain) using their 
oriented bounding box.  A filter function may be provided to further filter selected object. this function will 
transform all objects to render coordinate system. This will remove some floating point inaccuracy near 
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the camera position. Hence this function is suitable for testing object near the camera eye position. This 
function does not rely on the physics engine to perform ray-picking.  
* @see Pick().  
* @param ray: the ray in world coordinate system 
* @params pPickedObject: [out] the scene object that collide with the mouse ray. This may be NULL, if 
no object is found. 
* @params fMaxDistance: the longest distance from the ray origin to check for collision. If the value is 0 
or negative, the camera view culling radius is used as the fMaxDistance. 
* @param pFnctFilter: a callback function to further filter selected object. if it is NULL, any scene object 
could be selected. 
* @return :true if an object is picked.  
*/ 
bool CSceneObject::PickObject(const CShapeRay& ray, AttachedSceneObject* pTouchedObject, float 
fMaxDistance, OBJECT_FILTER_CALLBACK pFnctFilter) 

The following code shows an implementation of picking object by traversing the scene 
graph using the bounding volume of the segmented ray. 
bool CSceneObject::PickObject(const CShapeRay& ray, AttachedSceneObject* pTouchedObject, float 
fMaxDistance, OBJECT_FILTER_CALLBACK pFnctFilter) 
{ 
 if(fMaxDistance<=0) 
  fMaxDistance = m_sceneState.fViewCullingRadius; 
 PickedObject lastObj; 
 
 CRayCollider rayCollider; 
 rayCollider.SetMaxDist(fMaxDistance); 
 D3DXVECTOR3 vRenderOrigin=GetRenderOrigin(); 
 // the ray in the view space, shifted to the render origin. 
 CShapeRay ray_view(ray.mOrig-vRenderOrigin, ray.mDir); 
 
 // defining the view frustum based on the bounding sphere of the ray 
 float fViewRadius = fMaxDistance/2; 
 D3DXVECTOR3 vViewCenter = ray.mOrig + ray.mDir*fViewRadius; 
 
 While (for each objects in the view frustum){ 
…// code omitted 
  CBaseObject* pObj = queueNodes.front(); 
  CBaseObject* pViewClippingObject = pObj->GetViewClippingObject(); 
 
  queueNodes.pop(); 
  ObjectType oType = pObj->GetMyType(); 
 
  D3DXVECTOR3 vObjCenter; 
  pViewClippingObject->GetObjectCenter(&vObjCenter); 
  vObjCenter -= vRenderOrigin; 
 
  // float fR = pViewClippingObject->GetBoundSphere(); 
  // rough testing using bounding sphere 
  if(pViewClippingObject->TestCollisionSphere(& (vViewCenter), fViewRadius,1) ){ 
   // further testing using bounding box 
   CShapeOBB obb; 
   pViewClippingObject->GetOBB(&obb); 
   obb.mCenter-=vRenderOrigin; 
   float fDist; 
   if(rayCollider.Intersect(ray_view, obb, &fDist) && fDist<=fMaxDistance 
   /* filter objects*/&& (pFnctFilter==NULL || pFnctFilter(pObj)) ){ 
    // add to collision list and sort by distance to ray origin 
…// code omitted 
   } 
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  } 
 } 
 if(pTouchedObject!=0 ){ 
  if(lastObj.IsValid()){ 
   pTouchedObject->m_pObj = lastObj.m_pObj; 
   pTouchedObject->m_pTerrain = lastObj.m_pTerrain; 
  } 
  else 
   pTouchedObject->m_pObj = NULL; 
 } 
 return false; 
} 

7.2.2 Collision Detection Math Code 
The code presented here is based on an open source physics engine called ODE. It provides 

data structures for ray, AABB, OBB, etc, as well as collider classes for performing collisions 
between one shape and all other shapes. The reason that a collider class is used is that it may 
pre-calculate data that is shared among multiple collision queries. For example, if one uses the 
same ray to test collisions with 1000 objects, it does make sense to reuse the same collider 
which will save some CPU cycles.  
class CRayCollider : public Collider{ 
 bool Collide(const CShapeRay& world_ray, const CShapeAABB& world_AABB, const  
 bool Collide(const CShapeRay& world_ray, const CShapeOBB& world_oob); 
 bool Intersect(const CShapeRay& world_ray, const CShapeAABB& world_AABB, float * pDist, const 
D3DXMATRIX* world=NULL); 
 bool Intersect(const CShapeRay& world_ray, const CShapeOBB& world_oob, float * pDist); 
 void SetMaxDist(float max_dist); 
  
 bool RayAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& extents); 
 
 bool SegmentAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& extents); 
 bool RayTriOverlap(const D3DXVECTOR3& vert0, const D3DXVECTOR3& vert1, const 
D3DXVECTOR3& vert2); 
 
 bool InitQuery(const CShapeRay& world_ray, const D3DXMATRIX* world=NULL); 
protected: 
 // Ray in local space 
 D3DXVECTOR3 mOrigin; //!< Ray origin 
 D3DXVECTOR3 mDir;  //!< Ray direction (normalized) 
 D3DXVECTOR3 mFDir;  //!< fabsf(mDir) 
 D3DXVECTOR3 mData, mData2; 
…// code omitted 
}; 
 
bool CRayCollider::InitQuery(const CShapeRay& world_ray, const D3DXMATRIX* world) 
{ 
 // Reset stats & contact status 
 Collider::InitQuery(); 
  
 // Compute ray in local space 
 // The (Origin/Dir) form is needed for the ray-triangle test anyway (even for segment tests) 
 if(world) { 
  Matrix3x3 InvWorld(*world); 
  mDir = InvWorld * world_ray.mDir; 
   
  D3DXMATRIX World; 
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  CMath::InvertPRMatrix(World, *world); 
  D3DXVec3TransformCoord(&mOrigin, &world_ray.mOrig, &World); 
 }else{ 
  mDir = world_ray.mDir; 
  mOrigin = world_ray.mOrig; 
 } 
 
 // Precompute data (moved after temporal coherence since only needed for ray-AABB) 
 if(IR(mMaxDist)!=IEEE_MAX_FLOAT){ 
  // For Segment-AABB overlap 
  mData = 0.5f * mDir * mMaxDist; 
  mData2 = mOrigin + mData; 
 
  // Precompute mFDir; 
  mFDir.x = fabsf(mData.x); 
  mFDir.y = fabsf(mData.y); 
  mFDir.z = fabsf(mData.z); 
 }else{ 
  // For Ray-AABB overlap 
   
  // Precompute mFDir; 
  mFDir.x = fabsf(mDir.x); 
  mFDir.y = fabsf(mDir.y); 
  mFDir.z = fabsf(mDir.z); 
 } 
 return false; 
} 
 
bool CRayCollider::SegmentAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& 
extents){ 

float Dx = mData2.x - center.x;  if(fabsf(Dx) > extents.x + mFDir.x) return false; 
float Dy = mData2.y - center.y;  if(fabsf(Dy) > extents.y + mFDir.y) return false; 
float Dz = mData2.z - center.z;  if(fabsf(Dz) > extents.z + mFDir.z) return false; 
float f; 
f = mData.y * Dz - mData.z * Dy; if(fabsf(f) > extents.y*mFDir.z + extents.z*mFDir.y) return false; 
f = mData.z * Dx - mData.x * Dz; if(fabsf(f) > extents.x*mFDir.z + extents.z*mFDir.x) return false; 
f = mData.x * Dy - mData.y * Dx; if(fabsf(f) > extents.x*mFDir.y + extents.y*mFDir.x) return false; 
return true; 

} 
 
bool CRayCollider::RayAABBOverlap(const D3DXVECTOR3& center, const D3DXVECTOR3& extents)
{ 

float Dx = mOrigin.x - center.x; if(GREATER(Dx, extents.x) && Dx*mDir.x>=0.0f) return false; 
float Dy = mOrigin.y - center.y; if(GREATER(Dy, extents.y) && Dy*mDir.y>=0.0f) return false; 
float Dz = mOrigin.z - center.z; if(GREATER(Dz, extents.z) && Dz*mDir.z>=0.0f) return false; 
float f; 
f = mDir.y * Dz - mDir.z * Dy; if(fabsf(f) > extents.y*mFDir.z + extents.z*mFDir.y)      return false; 
f = mDir.z * Dx - mDir.x * Dz; if(fabsf(f) > extents.x*mFDir.z + extents.z*mFDir.x) return false; 
f = mDir.x * Dy - mDir.y * Dx; if(fabsf(f) > extents.x*mFDir.y + extents.y*mFDir.x) return false; 
return true; 

} 
 
bool CRayCollider::Collide(const CShapeRay& world_ray, const CShapeAABB& world_AABB, const 
D3DXMATRIX* world){ 
 // Init collision query 
 // Basically this is only called to initialize precomputed data 
 if(InitQuery(world_ray, world)) return true; 
 
 D3DXVECTOR3 vCenter, vExtents; 
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 world_AABB.GetCenter(vCenter); 
 world_AABB.GetExtents(vExtents); 
 
 // Perform stabbing query 
 if(IR(mMaxDist)!=IEEE_MAX_FLOAT) { 
  return SegmentAABBOverlap(vCenter, vExtents); 
 }else{ 
  return RayAABBOverlap(vCenter, vExtents); 
 } 
 
 return true; 
} 
 
bool CRayCollider::Collide(const CShapeRay& world_ray, const CShapeOBB& world_oob){ 
 CShapeRay ray(world_ray); 
 ray.mOrig -= world_oob.GetCenter(); 
 return Collide(ray, CShapeAABB(D3DXVECTOR3(0,0,0), world_oob.GetExtents()),   
 &world_oob.GetRot()); 
} 

7.3 Summary and Outlook 
In the old days, ray picking is used widely in game engines to query physical information 
about the game world. In recent years, picking functions have been leveraged in specialized 
game physics modules. However, object level picking is still an indispensable part in modern 
computer game engine. The picking function discussed in this chapter is mainly used for 
object level mouse ray picking in ParaEngine.  

Ray picking in triangle level may be implemented by different scene object independently. 
For example, if a ray hits an object, one can further calls the object’s picking function to 
obtain sub-level collision information in the triangle level. BSP used to be a great data 
structure for performing triangle level ray picking on large level geometry. However, it is not 
efficient for collision detection of a great number of smaller game objects of other shapes 
such as sphere and box. Recent physics engine usually uses octree and/or quad tree combined 
with AABB to provide collision detection of virtually any shape at both triangle level and 
object level.  

Caching is also a technique which could accelerate picking and other collision detection 
queries when they are issued in large qualities and that the collision spots are not far from one 
another. In simpler words, if in former queries, two objects are in contact with each other, 
they tend to continue to be so in subsequent queries; hence we can accelerate collision 
detection by keeping this information from query to query. Cached information should be 
invalidated and updated when object moves in the scene. One can find more information 
about picking and game physics on the web using the key words “game physics”. 
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Chapter 8 Simulating the Game World 

There are always moving objects in a game world. They are not all movies, in which all 
movements are pre-made by artists; they are not all controlled by human users or intelligent 
computer agents. Instead, a game world usually has its own physical laws which 
automatically produces or constrains the motions of game objects in it. Due to the limited 
power of a personal computer, not every object can be simulated accurately as in our real 
world. However, the trend of next generation game engine is on the integration of more 
advanced game world simulation technologies and artificial intelligence.  

One of the main tasks of simulating the game world is dealing with physics in it. We call it 
game physics or physics engine in the game industry. The most basic task of game physics is 
to ensure that two solid objects do not run into each other, as well as simulating forces on 
objects, such as gravity and thrust.  

The focus of the chapter is on simulation, which involves the use of rigid body dynamics 
simulation, motion blending of key framed animations, as well as other methods to simulate 
the motions of objects in a game world. We will also examine the related modules in 
ParaEngine. 

8.1 Foundation 
This section will cover several physics simulation methods. They are rigid body dynamics, 
sensor based physics, motion blending, and autonomous character animation. They are 
usually used together in a computer game engine.  

8.1.1 Rigid Body Dynamics 
In recent years, game physics have come to the middleware arena. They are called physics 
engine, which provides APIs to simulate the movements of 3D geometry under effects of 
gravity, friction, collision with other objects, and even soft body motions such as cloth. But 
the selling point of most physics simulation middleware is on the efficient and robust 
implementation of rigid body dynamics. We do not intend to cover the math here. Interested 
reader can refer to SIGGRAPH '97 course notes on physically based modeling: principles and 
practice8. Understanding the math of rigid body dynamics is one thing, implementing them 
efficiently is another thing. Our suggestion is that always consider using a middleware first.  

8.1.1.1 Integrating a Physics Engine 
Two critical problems in integrating physics engine into a game engine are simulation time 

management and collision response. Simulation time is the current time used in the physics 
engine. Each frame, we advance simulation time in one or several steps until it reaches the 
current rendering frame time. Choosing when in the game loop to advance simulation and by 
how much can greatly affect rendering parallelism.  

                                                      
8 SIGGRAPH '97 course notes: http://www.cs.cmu.edu/~baraff/sigcourse/  
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In game development, we usually have many hand-animated (key framed) game characters, 
complicated machines and some moving platforms. These objects do not obey the laws of 
physics. They are non physical objects, but they should appear to be physical. So the problem 
is how physical and non-physical object should react to each other. For example, we may 
consider key framed motion to be nonnegotiable. A key framed sliding wall can push a 
character, but a character cannot push a key framed wall. Key framed objects participate only 
partially in the simulation; they are not moved by gravity, and other objects hitting them do 
not impart forces. They are moved only by key framed animation data. For this reason, the 
physics engine usually provides a callback function mechanism for key framed objects to 
update their physical properties at each simulation step. And game developers need to 
manually tell the engine how the objects should respond. 

8.1.1.2 Novodex Physics Engine 
There are several commercial and open source middleware physics engine today. Among the 
most popular are havoc, novodex, and ODE. Novodex is even forward looking to support 
hardware accelerated physics calculation. It has a public license for developers to try for free. 
We will demonstrate the use of Novodex engine to perform geometry level physics in 
ParaEngine.  

A full integration guide of the Physics engine can be found here9. All physics SDKs are 
built upon a few fundamental objects: the physics SDK itself, a physics environment or scene, 
parameters for the scene, rigid bodies, materials that define the surface properties of the rigid 
bodies, collision shapes that the rigid bodies are built from, triangle meshes that some 
collision shapes are comprised of, constraints that connect rigid bodies at a point, and springs 
that connect rigid bodies via forces over a distance. The final component of the SDK is a set 
callback objects that developers can use to receive collision events, such as contact events 
between designated contact pairs, joint breakage, and the results of ray cast queries in 
previous frames, etc.  

We call all physical objects in Novodex “actors” and use the words “actor” and “object” 
interchangeably. These actors can be crates, doors, trees, rocks, any physical object that 
resides in the game world. There are two types of actors: “dynamic” and “static”. 

“Dynamic” actors are part of the physical scene and will move and collide with the world 
and other objects realistically. In other words, they are moved by force. A dynamic actor can 
be turned into a kinematic actor, if we want total control over them. A kinematic actor does 
not react to the physical world; yet the physical world reacts to kinematic actors. For example, 
they can be moved to wherever we want them, pushing all dynamic objects aside along the 
way, as if they had infinite mass. They are good for moving objects that are effectively 
immune to the physical scene, like Main RPG character, heavy moving platforms or large 
moving blast doors and gates, etc. Kinematic objects can be turned into dynamic objects and 
vice-versa.  

“Static” actors are stationary and never move in the scene. Static objects cannot be made 
dynamic or kinematic once they are created.  

                                                      
9 NovodeX AG, NovodeX SDK Integration Guide, www.novodex.com, 2005. 
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To summarize, the physical world is built with dynamic and static actors. Two kinds of 
dynamic actors are interchangeable; they are dynamic actors and kinematic actors. Kinematic 
actor can be thought of as a mobile static object, as it will push other dynamic objects asides. 
In the following text, we will use static actor, dynamic actor and kinematic actor to 
distinguish these three types of actors which comprise the physical world.  

 

Kinematic Character Collision Detection and Response 

The kinematic motion of character is calculated after the dynamic simulation of the physical 
environment is finished, which in turn will affect the dynamic objects in the next time step. 
We will first look at the simulation pipeline in ParaEngine.  

The Environment Simulation Routine is activated several times a second (may be 15 or 30 
FPS). The physics engine (in this case, it is the Novodex engine) usually has a higher frame 
rate (usually 50 or 60 FPS) for precise collision detection; hence in each environment 
simulation step, the Novodex engine may advances several sub steps until it catches up with 
the simulation time, which in turn may need to catch up the rendering time. During each sub 
steps, the physics engine may report user contacts through callbacks (since, Novodex is multi-
threaded; these callbacks are in different threads than the game loop thread). The game engine 
should remember these contacts in the callbacks; so that it can see them and respond to them 
when the game loop thread resumes control.  

The following code gives an overview of what should be done in the game loop thread.  

Environment simulation (SIM_TIMER) { 

Fetch last simulation result of dynamic objects 

Validate simulation result and update scene object parameters, accordingly. 

Calculate kinematic object motions and update simulation data for the next time step. 

Run AI module (SIM_TIMER) { 

Run scripting system (SIM_TIMER):  

Networking is handled transparently through the scripting system. 

} 

Start simulating for the next time step (this may run in a separate thread than the game 
loop). 

} 

The motion of kinematic objects are usually calculated from sensor results, such as casting 
rays in front of the character and returning contact points with the physics environment.  One 
advantage of using sensors is that one can detect collision before it happens. The shape of the 
sensors used in collision detection can be point, line or even the bounding shape of the 
character itself. 

Terrain learning is required for collision prevention. However, this task is less realistic 
because it relies on trial and error rather than prediction, and that a character will only detect 
obstacles when it is too late (i.e. already in contact).  
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8.1.2 Sensor Ray based Physics 
Physics in a game can be completed based on sensor rays or through other physics 

simulation techniques, such as the rigid body dynamics.  This section will focus on the first 
one. In Chapter 7, we have shown that ray picking is a common feature supported by 
different kinds of scene objects, such as bounding volumes, triangle mesh, terrain and ocean. 
A physics simulation engine which is entirely based on ray casting can be devised. In case 
that both the environment and the object being simulated is extremely complex, ray picking is 
the only choice left. In role playing games and first person shooter games, sensor ray based 
physics are still popular for the main game character. We can also use sensor rays for 
handling other kinematics character collision detections and responses. 

The idea of sensor ray based physics is similar to using our eye to perceive the environment. 
However, the process is reversed. Instead of letting the light rays coming into our eyes, we 
actively cast sensor rays to the environment and deduct the environment from information 
returned from sensor rays. Obviously, the more rays (higher resolution) cast, the more 
accurate environment information a program can deduct. The disadvantage of ray based 
physics is that no matter how many rays we cast, we can only deduct and never be sure about 
the space between two adjacent rays. The advantage is that it is a common way to perceive the 
environment. One can use the same algorithm for environment of any shape and of any 
complexity. 

In ParaEngine, character objects cast multiple sensor rays to get the knowledge about 
physical environment in its surroundings and animate accordingly. We will use it as an 
example of showing how sensor rays can be used in game physics. In our implementation, the 
character is modeled as a cylinder will move in a 3D scene with meshes, terrain and ocean. It 
will walk on land, swim in water, fall in air, climb on slopes, slide if there is a wall, and block 
if there is a corner, etc. All this can be done almost faultlessly and smoothly using only ray 
based physics. 

Character’s Physical Definition 

- dTimeDelta: the time delta to be simulated. Character’s position and speed will be 
updated according to this time step. Such as 1/30 second. 

- vPos: 3D position of the object in world coordinate system. Y is for height (up) axis. 

- vPosTarget: the destination position that the character is instructed to move. The Y 
component of vPosTarget is ignored, assuming the character should always be on ground. 

- Speed: the magnitude of the character’s current speed vector after projection to the X,Z 
planes. 

- vFacing: the direction of character’s current speed. It does not count for the vertical speed. 

- SpeedVertical: the magnitude of the character’s current vertical speed (i.e. speed in Y 
plane).  

- Radius: the character is modeled as a cylinder. This is the radius of this cylinder. We also 
call it physical radius of the character. Such as 0.5 meters 

- Height: height of the character. Also the cylinder’s height. We also call it physical height 
of the character. Such as 1.8 meters. 
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Constants 

- PENETRATION_DISTANCE: the maximum penetration distance allowed. In each 
simulation step, if the biped moves longer than this step, it is further divided in to several 
evenly spaced steps.  The step length is determined by the biped's speed multiplied by the 
time delta. Default value 0.1 meter. 

- MAX_STEPS_PER_FRAME: ignore PENETRATION_DISTANCE, if it takes longer 
than MAX_STEPS_PER_FRAME to complete in a simulation frame. This is likely to 
happen when character have very fast speed. This will ensure that the physics simulation 
will always complete within a certain sub steps. However, it may produce inaccurate 
physics. 

- BIPED_SENSOR_RAY_NUM: The number of rays in a sensor group. The higher this 
number, the more accurate the collision detection will be. The value must be 2n+1, such 
as 1,3,5,7,9,etc. The direction of the ith ray is given by the following equation:  

ith ray direction = Object facing + (PI / (rayNum+1)) * (i - ((rayNum-1) / 2) 

Normally 3 rays will be both accurate and fast enough for most situations of RPG 
characters. See Figure 8.1.  

- FALLDOWN_SPEED: the vertical speed at which the biped will fall down from high 
ground. Default value is 4.0. 

- CLIMBUP_SPEED: the vertical speed at which the biped will jump up on a shallow stair. 
Default value is 2.0. 

- REBOUND_SPEED: the speed at which the biped will rebound from a wall, assuming 
that the mass of characters are the same. This is proportional to rebound impulse. Default 
value is 0.3. 

- WALL_REBOUNCE_DISTANCE: the biped will rebound from a wall, if its body 
penetrates into the wall for the specified distance. Default value is 0.4. 

- SENSOR_HEIGHT_RATIO: the ratio between the sensor ray height and the biped's 
physical height. Default value is 0.5. 

- GRAVITY_CONSTANT: gravity. Value is 9.81. 

 

Floor 

Character 
Object facing 

Max stair height 

Character height 

Sensor rays 
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Figure 8.1 Multiple ray-casting collision detection 

The origin of all sensor rays is the character’s global position plus a max stair height, which 
is usually some factor of the character’s height. A character will automatically climb up stairs 
lower than this height. 

Collision Response and Wall Sliding 

We will first show collision detection and wall sliding without worrying about the terrain and 
water, etc. In the multiple-ray-casting method, the character avoids obstacles using the sensor 
ray hit points for detecting areas of free space instead of solely relying on the normal of the 
obstacles. The obstacle normal returned by the ray sensor query is only used to give a 
tentative move direction. Then we shift the origin of the sensor ray to the new location and 
query again to obtain another hit point. From the two hit points together with the velocity 
vector of the character, we calculate another impact normal, which will be used to find an 
alternative heading. Using hit points of sensor rays to obtain impact normal can be an 
advantage, because using the obstacle normal to find free space is a rough estimate, and the 
likelihood of success diminishes as the complexity of the environment increases.  

The algorithm is given below:  

vMovePos = vPos 
vOrig0 = (vPos.x,vPos.y+ Height* SENSOR_HEIGHT_RATIO, vPos.z) 
vDir0 = vFacing 
Range0 = Radius 
Cast a group (group0) of n (n=3) rays in front of the character, the middle ray in the group has 
orgin (vOrig0), direction (vDir0), and sensor range(Range0) 
 
If several sensor rays hit some obstacles within the Radius of the object{ 

if the world impact normals are roughly the same{ 
/* the character is considered to be blocked by a single wall. In case of a single 
blocking wall, we will try slide the character along the wall; */ 
vWallNorm = average of all impact normals returned by the ray query. 
// compute a tentative sliding wall facing(not the final one) as below: 
vTentativeFacing = vWallNorm  (vFacing vWallNorm)× ×  
 
vOrig1 = vOrig0+vTentativeFacing PENETRATION_DISTANCE×  
vDir1 = the direction of previous ray whose hit point is closest to vOrig0 
Range1 = Radius+ Speed  dTimeDelta×  
Cast another ray1 (vOrig1, vDir1, Range1) 
 
Bool bMoveAlongOldFacing=false 
If (the ray hits anything){ 

// get the wall direction by two hit points of the sensor ray 
vWallDir = ray1.hitpoint-group0.hitpoint 
if(vWallDir is not (0,0,0)){ 

/*check if the sensor ray and the biped facing vector are on the same side of the 
wall vector. If so, it means that the biped is currently walking into the wall, 
otherwise it is leaving the wall. */ 
If( (vDir1 vWallDir) (vFacing vWallDir)>0× • × ){ 
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speedScale = vFacing vWallDir
vMovePos=vPos+vWallDir (Speed dTimeDelta speedScale)

•
× × ×

 

}else{ 
bMoveAlongOldFacing = true 

} 
 
}else{ 

bMoveAlongOldFacing = true 
} 
 

}else{ 
bMoveAlongOldFacing = true 

} 
If(bMoveAlongOldFacing is true){ 

/*we permit walking along the old facing vector. This is the case when the 
character is walking away from the wall.*/ 
vMovePos=vPos+vFacing (Speed dTimeDelta)× ×  

} 
/** Finally, we will move the character slightly out of the wall, if it has run too deep in 
to it. */ 
if(vMovePos != vPos){ 

vOrig2 = vOrig0+(vMovePos-vPos) 
vDir2 = vFacing 
Range2 = Radius 
Cast a group (group2) of n (n=3) rays using the new character position 
 
If(group2 hit anything){ 

nRes=compare sensor ray group0 and group2 by their hitpoints to orig distances 
if(bMoveAlongOldFacing is false and nRes>0){ 

// The character is cornered; restore it to its original position 
vMovePos = vPos 

}else{ 
ReboundDistance=Radius-Groups2. MinDist-PENETRATION_DISTANCE;
If(ReboundDistance>=0){ 

// move character slightly out of wall 
vMovePos=vMovePos+Group2.vDir ( ReboundDistance)× −  

} 
} 

} 
} 

}else{ 
Character is considered to be at a corner. Stop the character. 

} 
}else{ 

// if nothing is hit, simply move the character forward 
vMovePos=vPos+vFacing (Speed dTimeDelta)× ×  

} 
vMovePos now contains the position of character after collision detection and wall sliding in 
the x,z plane.  
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Figure 8.2 shows the above algorithm. The character’s facing, wall obstacle and the origins of 
sensor ray group 0, 1, 2 are marked out. The character will finally slide along the wall to the 
bottom left. 

 

Figure 8.2 Ray casting based sliding wall 

 

The Complete Code  

The complete code can be found in the code section later in this chapter. It takes other 
factors such as terrain height, water level, etc in to account.  

The Implementation Result  

The game demo on our website uses the algorithm described in this section. Figure 8.3 
shows characters sliding along small cylinder physics object, climbing up stairs, sliding along 
wall meshes, turning around sharp wall edges, etc. The algorithm will generate accurate and 
smooth motion even with concave, convex and sharp physical meshes.  

wall vOrig1 

vOrig2 

vOrig0 

Impact normal 

vFacing 

vDir1 

vWallDir 
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Figure 8.3 Collision detection and response results 

8.1.3 Motion Blending 
Realistic character simulation is one of the hardest simulations in game engine; because a 
character usually has dozens of joints which move together in complex patterns and with 
complex constraints. So character simulation in current game engine implementation is 
usually achieved by motion blending premade animations according to physical events and 
user/script commands. Premade animations are traditional key frame based animations which 
are made by artists, frame by frame and/or using motion capture devices. For example, a 
character has key framed animations for walking, running, jumping, falling and attacking. A 
physical event generated by the physics engine, such as a sudden change on the terrain, might 
change the character state from walking to falling. The character will blend walking 
animation and falling animation with a blending factor, so that the motion of character is 
smoothly transformed from walking to falling.  

Since a complete introduction to motion blending requires knowledge about character’s 
skeleton system, we will cover it in the character animation Chapter 12. When motion 
blending is used in the simulation system, the character is modeled using a simple shape, such 
as cylinder, sphere or capsule, as well as a group of state parameters. The simulation module 
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can access the state parameters associated with a character object during simulation. For 
example some state parameters may indicate that the character is in air, on land or under 
water, etc. In the rendering pipeline, we will synthesize the final animation of a character 
from a pool of key framed animations and its associated state. This synthesis of motion is 
called motion blending.  

State of the Art 

As computer becomes faster, the simulation module usually replaces some animation parts 
which used to be made with key framed animation. For example, cloth, wave, particle 
simulation are moving to the physically based simulation module.  

The animations generated by rigid body dynamics are more diverse and realistic than key 
framed or motion blended animation. However, at the moment, they are only realistic under 
limited conditions. For instances, rigid body dynamics are used to simulate character motions 
when they are considered dead in the game, such as person or animals shot dead or their 
corpses being dragged on the floor. 

8.1.4 Autonomous Animation 
The ultimate goal of character motion simulation is autonomous animation, which will learn 
by observation the patterns of character motions under different environment and having them 
automatically generated at playing time. 

When animating a character, there are three kinds of animations which are usually dealt 
with separately in a motion synthesis system: (1) local animation, which deals with the 
motion of its major skeleton (including its global speed), (2) global animation, which deals 
with the position and orientation of the character in the scene, (3) add-on animation, which 
includes facial animation and physically simulated animation of the hair, cloth, smoke, etc. 
This chapter mainly talks about the local animation. Local animation is usually affected by 
the states of the character (such as a goal in its mind or a user command) and its perceptible 
vicinity (such as terrain and sounds). 

The motion of a specified human character can be formulated by a set of independent 
functions of time, i.e. 0{ ( ) | 1,2,..., ; [ , ]}nf t n N t T= ∈ +∞ . These functions or variables 
typically control over 15 movable body parts arranged hierarchically, which together form a 
parameter space of possible configurations or poses. For a typical animated human character, 
the dimension of the configuration is round 50, excluding degrees of freedom in the face and 
fingers. Given one such configuration at a specified time and the static attributes of the human 
figure, it is possible to render it at real-time with the support of current graphic hardware. 
Hence, the problem of human animation is reduced to, 
given 0{ ( ) | 1,2,..., ; [ , ]}n cf t n N t T T= ∈ and the environment W (or workspace in robotics), 
computing { ( ) | 1,2,..., ; [ , ]}n c cf t n N t T T T= ∈ + Δ  which should map to the desired and 
realistic human animation. 

The first option to motion generation is to simply play back previously stored motion clips 
(or short sequences of{ ( )}nf t ). The clips may be key-framed or motion captured, which are 
used later to animate a character. Real-time animation is constructed by blending the end of 
one motion clip to the start of the next one. To add flexibility, joint trajectories are 
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interpolated or extrapolated in the time domain. In practice, however, they are applied to 
limited situations involving minor changes to the original clips. Significant changes typically 
lead to unrealistic or invalid motions. Alternatively, flexibility can be gained by adopting 
kinematic models that use exact, analytic equations to quickly generate motions in a 
parameterized fashion. Forward and inverse kinematic models have been designed for 
synthesizing walking motions for human figures 10 . There are also several sophisticated 
combined methods11 to animate human figures, which generate natural and wise motions (also 
motion path planning) in a complex environment. Motions generated from these methods 
exhibit varying degrees of realism and flexibility. 

A different motion generation framework aims at synthesizing real-time humanoid 
animation by integrating the variables of the environment into the controllers of the human 
body and using a learning and simulation algorithm to calculate and memorize its motion. 
Both the environment and the human body can be partially or fully controlled by an external 
user; whereas the motion for the uncontrolled portion will be generated from an internal 
algorithm. To produce realistic animation, the environment and the body movements are first 
fully controlled until the animation system has discovered the patterns for the various 
combinations of the different parts of the body and the environment variables; then only the 
environment and selected parts of the human body are controlled, the system will generate the 
motion for the rest. The advantages of the framework are (1) the motion is fairly realistic 
since it is based on examples. (2) different parts of the human body may act less dependently; 
e.g. the top of the body might react to other environmental changes other than synchronizing 
with the bottom of the body. Please refer to our paper12 for more information. 

8.2 Architecture and Code 
The architecture of the simulation module involves the management of both static and 
dynamic objects. 

(1) Static physics objects management: There are usually tens of thousands of physical mesh 
objects in a scene. It is not possible to simulate them concurrently. Fortunately, most physical 
mesh objects are static, so we can choose to simulate only objects in the vicinity of mobile 
physics objects. And a garbage collector routine will remove static physics objects which are 
far away from its nearest mobile object. Usually a reference counter will suffice to do the task. 
Another way to remove a bunch of physics objects from the simulator is through the managed 
loader class supported by the scene manager. Objects in a managed loader can be loaded on 
demand, yet unload as a single entity. 

(2) Mobile object management: global characters are the most common mobile objects. The 
game engine must be able to simulate and render them very fast. If there are too many global 
objects (thousands), special data structures need to be used to store them according to their 
dynamic spatiality.  

                                                      
10 R. Boulic, D. Thalmann, and N. Magnenat-Thalmann. A global human walking model with real time kinematic 
personification. The Visual Computer, 6(6), December 1990. 

11  Kuffner, J. J., Autonomous Agents for Real-Time Animation. Ph.D. thesis, Stanford University, 1999. 

12 Xizhi Li,  Synthesizing Real-time Human Animation by Learning and Simulation. 2004. 
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The module for simulation in ParaEngine is called Environment Simulator. It uses a physics 
middleware (Novodex physics engine) for handling static mesh collision detection and rigid 
body dynamic simulations. 

8.2.1 Integrating the Physics Engine 
We use a thin wrapper called CPhysicsWorld for wrapping the physics middleware. A scene 
manager is always associated with an instance of this class. It holds data for static physics 
meshes and rigid body dynamic objects. As the game progress, objects may be moved in and 
out of the physics world. The scene manager contains all objects in the scene. The physics 
world only contains a subset of objects in the scene, which are currently being simulated. 
When an object is deleted from the scene manager, it is also deleted from the physics world.  
class CPhysicsWorld{ 
public: 
 /** the triangle mesh shape. since we need to create separate physics mesh with different scaling 
factors even for the same mesh model, we will need the mesh entity plus the scaling vector to fully 
specify the mesh object*/ 
 class TriangleMeshShape { 
 public: 
  MeshEntity* m_pMeshEntity; /// the mesh entity 
  D3DXVECTOR3 m_vScale; /// the scaling factor 
 
  NxTriangleMeshShapeDesc m_ShapeDesc; 
  TriangleMeshShape (){ 
   m_pMeshEntity = NULL; 
   m_vScale = D3DXVECTOR3(1.f,1.f,1.f); 
  } 
 }; 
 /// All shapes. There may be multiple object using the same shape 
 list<TriangleMeshShape*>  m_listMeshShapes; 
public: 
 NxPhysicsSDK*     m_pPhysicsSDK; 
 NxScene*          m_pScene; 
 NxVec3            m_pDefaultGravity; 
 
 /** get a pointer to physics scene object */ 
 NxScene* GetScene(){return m_pScene;} 
 
 /** get a pointer to physics SDK object */ 
 NxPhysicsSDK* GetPhysicsSDK(){return m_pPhysicsSDK;} 
 
 /**  Init the physics scene */ 
 void InitNx(); 
 
 /**  ReleaseNx() calls NxPhysicsSDK::releaseScene() which deletes all the objects in the scene and 
then deletes the scene itself.  It then calls NxPhysicsSDK::release() which shuts down the SDK. 
ReleaseNx() is also called after glutMainLoop() to shut down the SDK before exiting.*/ 
 void ReleaseNx(); 
 
 /** First call ReleaseNx(), then InitNx() */ 
 void ResetNx(); 
 
 /** this function will not return, until the rigid body physics had finished */ 
 void GetPhysicsResults(); 
 
 /** Start the physics for some time advances 
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 * @params dTime: advances in seconds */ 
 void StartPhysics(double dTime); 
 
 /** 
 * creat a static actor in the physical world from a mesh entity. 
 * @params pV: the world position of the actor 
 * @params fFacing: the facing around the y axis. 
 */ 
 NxActor* CreateStaticMesh(MeshEntity* ppMesh, const D3DXMATRIX& globalMat); 
 
 void ReleaseActor(NxActor* pActor); 
…// omitted some functions 
}; 

8.2.2 Environment Simulator 
The main simulation module in ParaEngine is called environment simulator, which have been 
covered in Chapter 1 and 2. We will go for its details in this section. The entry function of 
the simulator is Animate(), which advances the simulation by a given time step. After each 
simulation, the environment simulator will generate intermediate data such as a list of active 
bipeds, each of which contains objects in its perceptive radius, etc. 
Class CEnvironmentSim{ 
 /// a list of terrain that contains all active bipeds. 
 list <ActiveTerrain*> m_listActiveTerrain; 
 /// active bipeds may contain biped that is out of the view-culling radius.  
 list <ActiveBiped*> m_listActiveBiped; 
 /// very important biped list 
 list <CBipedObject*> m_listVIPBipeds; 
public: 
 virtual void Animate( double dTimeDelta ); 
 void CleanupImtermediateData(); 
private: 
 void Simulate(double dTimeDelta); 
 void GenerateActiveBipedList(); 
 void GenerateStaticCP(ActiveBiped* pActiveBiped); 
 void BipedSimulation(); 
 void PlayerSimulation(double dTimeDelta); 
 
 /**  when this function is called, it ensures that the physics object around an object is properly loaded. 
It increases the hit count of these physics objects by 1. The garbage collector in the physics world may 
use the hit count to move out unused static physics object from the physics scene (Novodex). This 
function might be called for the current player, each active mobile object in the scene and the camera 
eye position. */ 
 void CheckLoadPhysics(D3DXVECTOR3 vCenter, float fRadius); 
…// omitted some functions and members 
}; 

Active Biped is an important data structure that the environment simulator generates during 
each simulation step. An active biped structure contains reference to the character object, the 
terrain tile that contains this character, and a list of other characters in its perspective radius.  

Recall that the scene manager maintains a global list of mobile characters. However, using 
this global list for collision detection and rendering is inefficient. Its computation complexity 
is O(n2), which tests one character against every other in the list. The environment simulator 
utilizes the quad-tree terrain tile available in the scene manager. It saves a temporary 
reference to each mobile character at the smallest quad-tree terrain tile that contains it. Recall 
that in Chapter 4, the terrain tile object has a member called m_listBipedVisitors, which is a 
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list of characters that are visiting that tile region. When character moves, the environment 
simulator will automatically update the list in affected terrain tiles. When rendering characters, 
only bipeds in the potentially visible terrain tile will be tested for drawing. And when a 
character tries to generate a list of visible characters in its vicinity, it will only search in the 
terrain tile that contains it as well as in its adjacent terrain tiles. In the worst case, there will be 
9 terrain tiles that will need to be examined for generating visible character list for a given 
character.  
//----------------------------------------------------------------- 
// intermediate object definitions 
//----------------------------------------------------------------- 
struct ActiveTerrain{ 
 CTerrainTile* pTile; 
 list <ActiveBiped*> listActiveBiped; 
}; 
 
//---------------------------------------------------------------- 
/// It holds any information that is perceived by a Active Biped object 
/// including himself. This is one of the major product that environment 
/// simulator produces for each living bipeds. 
//---------------------------------------------------------------- 
struct ActiveBiped{ 
 struct PerceivedBiped{ 
  /// the distance of the perceived biped to the host 
  float fDistance;  
  CBipedObject* pBiped; 
  PerceivedBiped(float fDist, CBipedObject* pB){ 
   pBiped = pB; 
   fDistance = fDist; 
  }; 
  PerceivedBiped(){pBiped=NULL;}; 
 }; 
 /// the biped scene object. 
 CBipedObject* pBiped;   
 /// tile that tells most exactly where the object is in the scene 
 /// the terrain in which the biped is in 
 CTerrainTile* pTerrain; 
 /// object list that collide with this biped. It can be solid object or other bipeds. 
 list <CBaseObject*> listCollisionPairs; 
 /// object list that this biped could see or perceive. this includes all object 
 /// that is in the perceptive radius. 
 list <PerceivedBiped*> listPerceptibleBipeds; 
…// omitted some functions. 
}; 

There is, however, a problem when the character is at the boundary of two or three adjacent 
terrain tiles. There are three solutions to it: 

(1): increase the minimum size of terrain tiles that can store visiting biped lists and using 
the character’s point position (not its bounding volume) to locate the terrain tile that contains 
it. Ignore the problem in other cases. For example, if the container terrain tile is 200*200 
square meters, chances are small for characters walking on the boundary. And a special game 
title may even enforce that creatures can only move within a terrain tile but not crossing it. 

(2): have duplicate references to the same character in terrain tiles that either contains or 
intersects with the character’s perceptive volume. This method will work on all conditions, 
but is a little bit difficult to implement.   
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(3): use the character’s point position (not its bounding volume) to locate the only terrain 
tile that contains it. During collision testing, the character should not only test against other 
characters in the container terrain tile, but also any adjacent tiles that intersects with its 
perceptible region (usually a sphere). 

Another optimization we can apply is that we only need to update characters that are 
moving in the last simulation step. We can quickly detect if a character is moving or not by its 
speed magnitude. The following shows the character simulation pseudo code in the 
environment simulator. 

Character simulation pseudo code 

For more information about character simulation, please see the AI in Game World Chapter 
14.  
// Compute next scene for all game objects and generate the vicinity list.  
CEnvironmentSim::Simulate(dTimeDelta){ 
  
 // Load physics around the current player and the camera position.  
 // This is very game specific. Usually, it only ensures that physics object  
 // around the current player and camera eye position is loaded. 
 Call CheckLoadPhysics(player position, player radius*2)　 　  
 Call CheckLoadPhysics(camera position, camera near_plane*2)　 　  
 
 // Pass 1:Update Game Objects: building perceived object lists for each sentient object 
 for each sentient game objects (sentientObj) in the scene{ 
  sentientObj.m_nSentientObjCount=0; 
  sentientObj.m_PerceivedList.clear(); 
 
  update itself in the terrain tile according to its current position:  
 
  for each valid terrain tiles(9 or more) in the neighbourhood of sentientObj{ 
   for each object (AnotherObj) in the terrain tile{ 
    if(AnotherObj is not a sentient object){ 
     if sentientObj falls inside the sentient area of any other game object(AnotherObj){ 
      wake up AnotherObj, add it to the back of the sentient object list. 
      AnotherObj.OnEnterSentientArea(); 
     } 
    } 
    if AnotherObj falls inside the sentient area of sentientObj{ 
     sentientObj.m_nSentientObjCount++; 
     if AnotherObj falls inside the perceptive area of sentientObj{ 
      sentientObj.m_PerceivedList.push_back(AnotherObj.name()); 
     } 
    } 
   } 
  } 
  if(sentientObj.m_nSentientObjCount==0){ 
   sentientObj.OnLeaveSentientArea(); 
   remove sentientObj from the sentient object list. 
  }else{ 
   // call game AI now or in the next pass, we advise a second pass,  
   // so it gives equal chance to each character 
   // sentientObj.OnPerceived(); 
  } 
 } 
 
 // Pass 2 (It can be combined with Pass 1): call game AI of sentient objects 
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 for each sentient game objects (pObj) in the scene{ 
  // generate way points 
  pObj->PathFinding(dTimeDelta); 
  // move the biped according to way point commands 
  pObj->AnimateBiped(dTimeDelta); 
  // apply AI controllers 
  if(pObj->GetAIModule()) 
   pObj->GetAIModule()->FrameMove((float)dTimeDelta); 
  if(!pObj->m_PerceivedList.empty()) 
   pObj->On_Perception(); 
  // call the frame move script if any. 
  pObj->On_FrameMove(); 
 } 
 
 // Animate all global particles 
 for each particle system (pObj) in the scene{ 
  if( !pObj->IsExploded() ) 
   pObj->Animate(dTimeDelta); 
 } 
} 

8.2.3 Sensor Ray Structure 
It represents a group of rays sharing the same origin. 
/** used for ray casting biped for low level navigation.  
* @see CBipedObject::MoveTowards()*/ 
struct SensorGroups{ 
 /// origin shared by all sensor rays in this group. 
 D3DXVECTOR3 m_vOrig;  
 struct SensorRay 
 { 
  /// direction of the ray in the x,z plane 
  D3DXVECTOR3 vDir; 
  /// the impact norm of the ray  
  NxVec3 impactNorm; 
  /// the hit point of the ray 
  NxVec3 impactPoint; 
  /// the distance from the impact point to origin.  
  float fDist; 
  /// whether the sensor has detected anything in its range 
  bool bIsHit; 
 public: 
  SensorRay():bIsHit(false),fDist(0){}; 
 }; 
 /** n (n=BIPED_SENSOR_RAY_NUM=3) rays in front of the character, which covers a region of (n-
2)/(n-1)*Pi radian.*/ 
 SensorRay m_sensors[BIPED_SENSOR_RAY_NUM]; 
 /// the average of all impact norms if available. 
 D3DXVECTOR3 m_vAvgImpactNorm; 
 /// range for all sensors. 
 float m_fSensorRange; 
 /// number of walls we hit. 
 int m_nHitWallCount; 
 /// the ray index whose impactPoint is closest to the origin. if negative, no ray has hit anything. 
 int m_nHitRayIndex; 
  
public: 
 /** whether the sensor group has hit anything. */ 
 bool HasHitAnything(){ return m_nHitRayIndex>=0;} 
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 /** whether the sensor group has hit anything. A negative value is returned if no hit ray.*/ 
 int GetHitRayIndex(){ return m_nHitRayIndex;} 
 /** get the hit ray */ 
 SensorRay& GetHitRaySensor(){return m_sensors[m_nHitRayIndex];} 
 /** get the number of wall hits. */ 
 int GetHitWallCount(){ return m_nHitWallCount;} 
 /** get average impact norm. this is not normalized and may not be in the y=0 plane*/ 
 D3DXVECTOR3 GetAvgImpactNorm(){ return m_vAvgImpactNorm;} 
 
 /** reset the sensor group to empty states. */ 
 void Reset() 
 void ComputeSensorGroup(const D3DXVECTOR3& vOrig, const D3DXVECTOR3& vDir, float 
fSensorRange, int nSensorRayCount = BIPED_SENSOR_RAY_NUM, float fAngleCoef = 0.16f); 
 
 bool CompareWith(const SensorGroups& otherGroup, float fAngleCoef = 0.16f); 
…// omitted some functions. 
}; 

8.2.4 Ray based Character Simulation 
The following shows the actual implementation of the ray based character simulation 
discussed previously. 
bool CBipedObject::MoveTowards( double dTimeDelta, const D3DXVECTOR3& vPosTarget, float 
fStopDistance, bool * pIsSlidingWall) 
{ 
 static SensorGroups g_sensorGroups[3]; 
 float fMaxPenetration = (float)(m_fSpeed * dTimeDelta); 
 if (fMaxPenetration>PENETRATION_DISTANCE){ 
  int nNumSteps= (int)ceil(fMaxPenetration/PENETRATION_DISTANCE); 
  if(nNumSteps> MAX_STEPS_PER_FRAME) 
   nNumSteps = MAX_STEPS_PER_FRAME; 
  double dT = dTimeDelta/nNumSteps; 
  bool bReachedDestination = false; 
  for (int i=0;(i<nNumSteps) && (!bReachedDestination);i++) 
  { 
   bReachedDestination = MoveTowards(dT, vPosTarget, fStopDistance, pIsSlidingWall); 
  } 
  return bReachedDestination; 
 } 
 float fGravity = GRAVITY_CONSTANT; 
 { 
  D3DXVECTOR3 vHeadPos = m_vPos; 
  vHeadPos.y += GetPhysicsHeight(); 
  if(CGlobals::GetOceanManager()->IsPointUnderWater(&vHeadPos)) 
  { 
   GetBipedStateManager()->AddAction(CBipedStateManager::S_IN_WATER); 
   fGravity *= 0.2f; 
   if(m_fSpeedVertical > 0) { 
#define UP_WATER_RESISTENCE_COEF 0.1f 
#define DOWN_WATER_RESISTENCE_COEF 0.1f 
    fGravity += m_fSpeedVertical*m_fSpeedVertical*UP_WATER_RESISTENCE_COEF; 
   } 
   else 
   { 
    fGravity -= m_fSpeedVertical*m_fSpeedVertical*DOWN_WATER_RESISTENCE_COEF; 
   } 
  } 
  else 
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   GetBipedStateManager()->AddAction(CBipedStateManager::S_ON_FEET); 
 } 
  
 
 bool bReachPos = false; 
 bool bSlidingWall = false; // whether the object is sliding along a wall. 
 bool bUseGlobalTerrainNorm = false;   
 bool bIgnoreTerrain = false; 
 
 D3DXVECTOR3 vMovePos = m_vPos; // the position for the next frame without the height 
    D3DXVECTOR3 vSub; 
    float fDist; 
 
 // get distance from target 
    D3DXVec3Subtract( & vSub, & m_vPos, & vPosTarget ); 
    fDist = D3DXVec2LengthSq( & D3DXVECTOR2(vSub.x, vSub.z)  ); 
     
 // check if we have already reached the position 
 if(fStopDistance == 0) 
 { 
  if(fMaxPenetration * fMaxPenetration >= fDist) 
  { 
   // we're within reach 
   bReachPos = true; 
   // set the exact point 
   vMovePos = vPosTarget; 
  } 
 } 
 else if( fStopDistance > fDist) 
    { 
        /// if we're within reach, we will stop without reaching the exact target point 
  bReachPos = true; 
 } 
 
 // get the biped's facing vector in y=0 plane. 
 D3DXVECTOR3 vBipedFacing; 
 GetSpeedDirection( &vBipedFacing ); 
 // physical radius 
 float fRadius = GetPhysicsRadius(); 
 
 // if we have not reached position , we will move on. 
    if(bReachPos == false && GetSpeed()!=0.f) { 
  { 
   // get origin 
   D3DXVECTOR3 orig = m_vPos; 
   float fSensorHeight = GetPhysicsHeight()*SENSOR_HEIGHT_RATIO; 
   orig.y += fSensorHeight;  
   // compute sensor group 0.  
   g_sensorGroups[0].ComputeSensorGroup(orig, vBipedFacing, fRadius); 
  } 
   
  bool bCanMove = false; // whether the character can move either directly or sliding along wall. 
 
  // move the character according to its impact forces 
  if(g_sensorGroups[0].GetHitWallCount() > 1) 
  { 
   /** it has hit multiple things, we will not move the object */ 
   bCanMove = false; 
  } 
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  else 
  { 
   if(g_sensorGroups[0].GetHitWallCount() == 1) 
   { 
    bCanMove = true; 
    bSlidingWall = true; 
 
    /** 
    * we use the average impact norm to get a tentative point where the biped is most likely to be 
in the next frame. 
    * we then cast another ray (group 1) from this tentative point to get another impact point. if 
there is no impact point  
    * within the radius of (fRadius+m_fSpeed * dTimeDelta), the object will move using the old 
facing vector. 
    * without further processing. Otherwise, from the two impact points(of group 0 and 1), we can 
calculate the wall direction vector, 
    * which will be used for sliding wall.  
    */ 
    { 
     // we will try sliding the character along the wall.The wall normal is given by impactNorm 
(the surface norm). 
     D3DXVECTOR3 vWallNorm = g_sensorGroups[0].GetAvgImpactNorm(); // use only its 
projection on the y=0 plane. 
     vWallNorm.y = 0; 
     D3DXVec3Normalize(&vWallNorm,&vWallNorm); 
 
     D3DXVECTOR3 vTentativeFacing; 
     /** we will compute a tentative sliding wall facing(not the final one) as below: 
     * vFacing = vWallNorm (X) (vFacing (X) vWallNorm);  
     * and get a tentative new position of the character. 
     */ 
     D3DXVec3Cross(&vTentativeFacing, &vBipedFacing, &vWallNorm); 
     D3DXVec3Cross(&vTentativeFacing, &vWallNorm, &vTentativeFacing); 
     D3DXVec3Normalize(&vTentativeFacing,&vTentativeFacing); // just make it valid 
     D3DXVec3Scale( &vTentativeFacing, &vTentativeFacing, PENETRATION_DISTANCE ); 
     vTentativeFacing.y=0; 
     D3DXVECTOR3 vHitRayOrig = g_sensorGroups[0].m_vOrig + vTentativeFacing; 
     D3DXVECTOR3 vHitRayDir = g_sensorGroups[0].GetHitRaySensor().vDir; 
     float fSensorRange = fRadius+float(m_fSpeed * dTimeDelta); 
     // compute sensor group 1.  
     g_sensorGroups[1].ComputeSensorGroup(vHitRayOrig, vHitRayDir, fSensorRange, 1); 
    } 
    bool bMoveAlongOldFacing = false; 
    if(g_sensorGroups[1].HasHitAnything()) 
    { 
     // check to see if the object needs to follow the wall. 
     D3DXVECTOR3 vWallDir = 
(D3DXVECTOR3&)(g_sensorGroups[1].GetHitRaySensor().impactPoint - 
g_sensorGroups[0].GetHitRaySensor().impactPoint); 
     vWallDir.y=0; 
     // g_sensorGroups[1].GetHitRaySensor().fDist; 
     if(vWallDir != D3DXVECTOR3(0,0,0)) 
     { 
      D3DXVec3Normalize(&vWallDir,&vWallDir); 
       
      D3DXVECTOR3 tmp1,tmp2; 
      D3DXVec3Cross(&tmp1, &g_sensorGroups[1].GetHitRaySensor().vDir, &vWallDir); 
      D3DXVec3Cross(&tmp2, &vBipedFacing, &vWallDir); 
      if(tmp1.y * tmp2.y > 0) 
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      { 
       // if the object is walking into the wall, we will slide along the wall. 
       float speedScale = D3DXVec3Dot(&vBipedFacing, &vWallDir); 
       D3DXVECTOR3 vFacing; 
       D3DXVec3Scale( &vFacing, &vWallDir, float( m_fSpeed * 
dTimeDelta*speedScale) ); 
       D3DXVec3Add( & vMovePos, & vFacing, & m_vPos ); 
      } 
      else 
       bMoveAlongOldFacing = true; 
     } 
    } 
    else 
     bMoveAlongOldFacing = true; 
 
    if(bMoveAlongOldFacing){ 
     // maintain the direction. 
     D3DXVECTOR3 vFacing; 
     D3DXVec3Scale( &vFacing, &vBipedFacing,  (float)(m_fSpeed * dTimeDelta)); 
     D3DXVec3Add( & vMovePos, & vFacing, & m_vPos ); 
    } 
 
    if(vMovePos != m_vPos) { 
     { 
      D3DXVECTOR3 vOrig = g_sensorGroups[0].m_vOrig + (vMovePos - m_vPos); 
      // compute sensor group 2.  
      g_sensorGroups[2].ComputeSensorGroup(vOrig, vBipedFacing, fRadius); 
     } 
     if(g_sensorGroups[2].HasHitAnything()){ 
      if((!bMoveAlongOldFacing) && g_sensorGroups[2].CompareWith(g_sensorGroups[0])) 
      { 
       // if the biped has reached a corner, stop it. 
       vMovePos = m_vPos; 
      }else { 
       float fReboundDistance = (fRadius - g_sensorGroups[2].GetHitRaySensor().fDist - 
PENETRATION_DISTANCE); 
       if(fReboundDistance >= 0){ 
        D3DXVECTOR3 vFacing; 
        D3DXVec3Scale( &vFacing, &g_sensorGroups[2].GetHitRaySensor().vDir,  -
fReboundDistance); 
        D3DXVec3Add( & vMovePos, & vFacing, & vMovePos ); 
       } 
      } 
     } 
    } 
   }else { 
    // if nothing is hit, simply move the character forward 
    bCanMove = true; 
    D3DXVECTOR3 vFacing; 
    D3DXVec3Scale( &vFacing, &vBipedFacing, float( m_fSpeed * dTimeDelta ) ); 
    D3DXVec3Add( & vMovePos, & vFacing, & m_vPos ); 
   } 
  } 
    } 
 
 /** 
 * check to see if the character is in the air, or is climbing up stairs. 
 * if so we will see the bReachPos to false, and allow the character to smoothly fall down or fly up. 
 */ 
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 D3DXVECTOR3 orig = vMovePos; 
 orig.y += GetPhysicsHeight(); 
 NxRay ray((const NxVec3&)orig, NxVec3(0,-1.f,0)); 
 NxRaycastHit hit; 
 
 // Get the closest shape 
 float dist; 
 NxShape* closestShape = CGlobals::GetPhysicsWorld()->GetScene()->raycastClosestShape(ray, 
NX_ALL_SHAPES, hit, 0xffffffff, 10*OBJ_UNIT); 
 if (closestShape) 
 { 
  dist = hit.distance;  
 } 
 else 
 { 
  dist = MAX_DIST*OBJ_UNIT; // infinitely large 
 } 
 
 // set the object height to the higher of the two. 
 float fTerrainHeight = CGlobals::GetGlobalTerrain()->GetElevation(vMovePos.x, vMovePos.z); 
 float fPhysicsHeight = orig.y - dist; 
 
 if(fTerrainHeight > (m_vPos.y + GetPhysicsHeight())){ 
  bIgnoreTerrain = true; 
  // the biped has gone into a terrain hole, we will subject the object to the physics object only. 
  vMovePos.y = fPhysicsHeight; 
  bUseGlobalTerrainNorm = false; 
 }else{ 
  bIgnoreTerrain = false; 
 
  /// take terrain in to account, we will adopt the higher of the two as the character's next height. 
  if(fPhysicsHeight > fTerrainHeight){ 
   // physics object is over the terrain objects. 
   vMovePos.y = fPhysicsHeight; 
   bUseGlobalTerrainNorm = false; 
  }else{ 
   // the terrain is over the physics objects. 
   vMovePos.y = fTerrainHeight; 
   if(m_vPos.y < (vMovePos.y + GetPhysicsHeight()) ) 
    /// if the object is not too far from the ground, it will subject to terrain surface norm. 
    bUseGlobalTerrainNorm = true; 
   else 
    /// if the object is well above the ground(in air), it will not snap to terrain surface norm. 
    bUseGlobalTerrainNorm = false; 
  } 
 } 
  
 if(vMovePos.y < LOWEST_WORLD) 
  vMovePos.y = LOWEST_WORLD; 
 
 // move the object to the new location in the x,z plane 
 m_vPos.x = vMovePos.x; 
 m_vPos.z = vMovePos.z; 
 /// animate the character vertically according to gravity. 
 /// implement smooth fall down and jump up. 
 if(m_vPos.y > vMovePos.y) 
 { 
  if(m_fSpeedVertical == 0.f) 
   m_fSpeedVertical = -GetAbsoluteSpeed(); 
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  float fLastSpeedVertical = m_fSpeedVertical; 
  m_fSpeedVertical -= fGravity*(float)dTimeDelta; 
  float dY = (float)dTimeDelta*(m_fSpeedVertical+fLastSpeedVertical)/2.f; 
  m_vPos.y += dY; 
 
  if(m_fSpeedVertical == 0.f) 
   m_fSpeedVertical = EPSILON; 
 
  if(m_vPos.y <= vMovePos.y){ 
   m_fSpeedVertical = 0.f; 
   m_vPos.y = vMovePos.y; 
   /** end jumping, if the biped is near the ground and has a downward vertical speed.*/ 
   { 
    CBipedStateManager* pCharState = GetBipedStateManager(); 
    if(pCharState) 
     pCharState->AddAction(CBipedStateManager::S_JUMP_END); 
   } 
  }else if (m_vPos.y > (vMovePos.y+GetPhysicsHeight()*0.25f) && m_fSpeedVertical<0){ 
   /** fall down, if the biped is well above the ground and has a downward vertical speed.*/ 
   { 
    CBipedStateManager* pCharState = GetBipedStateManager(); 
    if(pCharState) 
     pCharState->AddAction(CBipedStateManager::S_FALLDOWN); 
   } 
  } 
 }else if(m_vPos.y < vMovePos.y){ 
  bool bIsJumpingUp = false; 
  float fClimbUpSpeed = GetAbsoluteSpeed(); 
  if(fClimbUpSpeed < CLIMBUP_SPEED) 
   fClimbUpSpeed = CLIMBUP_SPEED; 
  if(m_fSpeedVertical <= fClimbUpSpeed ) 
   m_fSpeedVertical = fClimbUpSpeed; 
  else  
   bIsJumpingUp = true; 
   
  float fLastSpeedVertical = m_fSpeedVertical; 
  m_fSpeedVertical -= fGravity*(float)dTimeDelta; 
  float dY = (float)dTimeDelta*(m_fSpeedVertical+fLastSpeedVertical)/2.f; 
  m_vPos.y += dY; 
 
  if(bIgnoreTerrain){ 
   if(m_vPos.y >= vMovePos.y) 
    m_vPos.y = vMovePos.y; 
  }else { 
   if(m_vPos.y<vMovePos.y || (!bIsJumpingUp)) 
    m_vPos.y = vMovePos.y; 
  } 
  if(!bIsJumpingUp){ 
   m_fSpeedVertical = 0.f; 
   { 
    CBipedStateManager* pCharState = GetBipedStateManager(); 
    if(pCharState) 
     pCharState->AddAction(CBipedStateManager::S_JUMP_END); 
   } 
  } 
 }else{ 
  /** if the character is on the ground,  make sure that it has a non-negative speed */ 
  if(m_fSpeedVertical > 0.f) 
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  { 
   float fLastSpeedVertical = m_fSpeedVertical; 
   m_fSpeedVertical -= fGravity*(float)dTimeDelta; 
   float dY = (float)dTimeDelta*(m_fSpeedVertical+fLastSpeedVertical)/2.f; 
   m_vPos.y += dY; 
  } 
  else 
   m_fSpeedVertical = 0.f; 
 } 
 
 // Compute the norm (orientation) of the biped, and smoothly transform to it. 
 { 
  D3DXVECTOR3 vNorm; 
  if(bUseGlobalTerrainNorm) { 
   // get the global terrain norm 
   vNorm = GetNormal(); 
   // this normal value simulate a real biped on a slope 
   if((1.f-vNorm.y) > EPSILON ){ 
    D3DXVECTOR3 vAxis; 
    D3DXVec3Normalize(&vAxis, D3DXVec3Cross(&vAxis, &D3DXVECTOR3(0,1,0), &vNorm));
    D3DXVECTOR3 vFacing; 
    GetSpeedDirection(&vFacing); 
    float fFactor = D3DXVec3Dot(&vAxis, &vFacing); 
    if(fabs(fFactor) < EPSILON) 
     fFactor = 1; 
    else 
     fFactor = sqrt(1-fFactor*fFactor); 
 
    D3DXMATRIX mx; 
    D3DXMatrixRotationAxis(&mx, &vAxis, acos(vNorm.y)*fFactor); 
    D3DXVec3TransformCoord(&vNorm, &D3DXVECTOR3(0,1,0), &mx); 
   } 
  }else { 
   // For physics meshes. the norm is always (0,1,0) 
   vNorm = D3DXVECTOR3(0,1,0); 
  } 
 CMath::SmoothMoveVec3(&m_vNorm, vNorm, m_vNorm, (SPEED_NORM_TURN*dTimeDelta), 0); 
 } 
 if(pIsSlidingWall){ 
  *pIsSlidingWall = bSlidingWall; 
 } 
 return bReachPos; 
} 

8.3 Summary and Outlook 
Physics can be very complex in a game engine and there is rarely a single framework of 

physics which can be applied throughout a game engine. This is because, in computer game 
engines, some physics are physically simulated, some are motion blended, while others may 
be triggered by special objects in the scene. Both the physics model representation and 
simulation algorithms can differ greatly for different types of objects in the 3D world. For 
example, the global terrain, the weather system, the ocean water, the particle system, the 
indoor buildings, and outdoor meshes may all have different simulation schemes. Sometimes, 
integrating all the simulation scheme may not be as easy as choosing the appropriate method 
for each of them. For example, suppose there is a cave inside the heightmap-based global 
terrain. A game engine can not decide whether the cave physics or the heightmap-based 
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global terrain physics should be applied at the intersection regions. In such cases, some 
additional rules need to be specified when object transfers from one physics system to another.  

In ParaEngine, we have implemented physics simulation for the global terrain, the indoor 
buildings, outdoor meshes and some of their combinations. Mobile characters may be subject 
to one or more of these physics system at a time. For example, a character may swim from the 
ocean to the land; fall down a hole on the terrain and landed on the floor of an underground 
drungon, etc.  
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Chapter 9 Terrain  

Terrain is an important part for outdoor games. It is a continuous undulating grid of meshes 
that may extend infinitely in all directions. In a single camera shot, we may need to render 
250000 square meters or more terrain surface without losing details from the observer. This 
usually involves dynamically rendering a mesh which has very high triangle counts, and 
painting them with multiple layers of detailed textures. In this chapter, we will examine the 
technique used in outdoor terrain rendering. In Chapter 3, we have shown the major file 
formats used in terrain rendering, which is very useful in understanding how the terrain works. 
The terrain module or terrain engine we are going to build in this chapter supports real-time 
rendering of infinitely large terrain surface, with dynamic multi-texturing and geo-morphing. 
It also supports terrain holes, through which a game world could be extended to the 
underground, such as building caves and tunnels. 

9.1 Foundation 

9.1.1 Understanding Terrain Data 
Understanding the terrain data and the ability of a modern personal computer is very useful to 
the design of a terrain engine. Recall in chapter 3, the terrain in a game world is partitioned 
in to many equal sized squares as shown in Figure 3.3. Each square is called a terrain tile, and 
is specified by a 2D coordinate. Each terrain tile references an elevation file and a texture 
mask file that specifies how this terrain tile should be painted, etc. An elevation file is just a 
two dimensional array heightmap[nWidth][nHeight], where heightnap[x][y] contains the 
terrain height value at (x*VertexSpacing, y*VertexSpacing). During terrain rendering, the 
heightmap are used to build the triangles mesh, as shown in Figure 9.1. 

 

Figure 9.1 Terrain Grid 
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VertexSpacing is the distance between two adjacent points. Now suppose that 
VertexSpacing is 1 meter. Then in order to rendering terrain of size 500*500 square meters 
with brutal force, 250000 triangles should be built and rendered at real time. This is barely 
affordable for a modern GPU, especially when there are many other scene objects to be 
rendered in the same frame. Hence we need some algorithm to build the terrain mesh with 
fewer triangles. From Figure 9.1, we see that the farther away the terrain, the more dense the 
triangles. In the farthest end, we can barely distinguish the difference between adjacent 
triangles. On the other hand, notice that some terrain surface is relatively flat with regard to 
the camera, and we can not distinguish the height difference either. In both cases, we can 
simplify the terrain mesh by merging triangles. Most popular terrain rendering algorithms are 
based on this level of detail (LOD) technique. We will see some of them in the next section. 

Another large dataset for terrain rendering is texture data which is used for painting the 
terrain surface. See Figure 3.4 in Chapter 3. First of all, painting the terrain with non-repeated 
detailed textures is too expensive in terms of memory usage. A 256*256 pixel bitmap can 
only be used to texture a very small region such as 4*4 square meters. To render a single 
static frame containing 250000 square meters terrain with just one texture layer, we will need 
gigabytes of texture data. This is not affordable by current hardware. Moreover, it is difficult 
for artists to generate such large texture data unless they are taken by satellite photographing. 
Hence, terrain texturing in computer games is usually implemented as several layers of tiled 
images blended together.  In each texture layer, the same detailed tiled image is repeated 
across a relatively large region and a very low resolution alpha map is stretched across the 
entire region to blend the tiled images with the background. See Figure 9.2. 

 

 Figure 9.2 Alpha blending of texture layer 

Each sub region of a terrain surface may be textured by further blending several alpha 
blended texture layers. For example, one layer uses a tiled cobble image, another uses tiled 
grass image, the third uses just 1 pixel black image. Blending these three over a large region 
using the above multi-texturing technique, we can easily create a grass land with cobble roads 
and black shadows of props on the land. With tiled images and alpha blending, we need less 
texture to paint the terrain. However, we still need to provide the alpha map for the entire 
terrain surface. Fortunately, each pixel of alpha map is 4 or 8 bits and a 128*128 pixel alpha 
map can be stretched and used for a very large region, such as 60*60 square meters. The 
texture data for a terrain is thus mainly comprised of alpha maps and a few detailed textures. 
Alternatively, we call alpha maps, mask files in this book.  

Tiled detailed texture Alpha map (mask file) Blended texture layer 
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9.1.2 Level of Detail Terrain Algorithm 
This section provides an overview to several popular terrain rendering algorithms used in 
game engines. It helps engine programmers to select the proper implementation. The Virtual 
Terrain Project13 provides useful links to published papers and implementations of various 
terrain rendering algorithms. Popular algorithms used in game terrain rendering are brutal 
force, Chunked LOD, modified ROAM, GeoMipmapping, which are briefly introduced and 
compared in this section. We will discuss the hybrid algorithm we used in further details in 
the next section. 

Brutal Force 

Brutal force renders the mesh in the view frustum in their original form. Figure 9.3 shows 
triangles with brutal force terrain rendering. Brutal force rendering is actually very useful in 
computer games. It is also the algorithm that uses lest CPU time. As GPU is getting faster, we 
can just send the clipped terrain mesh to GPU for rendering with brutal force method. Another 
special usage of brutal force rendering is that we can use it to render remote terrains which are 
displayed as silhouette in fog. Brutal force also simplifies the issues of terrain geo-morphing 
and multi-texturing. It will perhaps be used more often in games as CPU time is getting more 
precious in computer game engine. Please note that brutal force based terrain usually uses a 
quad tree for view clipping, so that regions outside the camera view frustum will be clipped 
quickly. An improved version of brutal force is chunked LOD. Please see below. 

 

Figure 9.3 Brutal Force Terrain Triangles 

 

Chunked LOD: Chunked level of detail 

It is a relatively simple, yet very effective terrain rendering technique based on discrete 
level of detail. Contrary to other more complicated algorithms, its aim is not to achieve an 
optimal triangulation, but to maximize triangle throughput, while minimizing CPU usage. It is 
built on the fact, that today’s GPU are so fast that it is usually cheaper to render a bit more 
triangles than to spend a lot of CPU cycles to drop some of the unnecessary ones. Of course, 
level of detail management is still required, but at a much coarser level. The basic idea is to 

                                                      
13 The Virtual Terrain Project: http://www.vterrain.org 
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apply view dependent LOD management not to single vertices, but to bigger chunks of 
geometry.  

As a preprocessing step, a quad tree of terrain chunks is built. Every node is assigned a 
chunk, containing the self contained mesh in that quad.  The meshes on different levels in the 
quad tree have different sizes in world space. During rendering, the quad tree nodes are culled 
against the viewing frustum as usual. The visible nodes are then split recursively, until the 
chunk’s projected error falls below a threshold. 

 Since the terrain is assembled from separate chunks, there will be cracks in the geometry 
between different LODs in the hierarchy. In order to minimize these artifacts, Ulrich uses a 
technique called skirting. Skirting basically means that on the edges of the mesh, there are 
extra triangles extending downwards, effectively hiding the gaps. See Figure 9.4 for meshes 
generated by Chunked LOD. In different implementations, the triangle chunk may be 
constructed differently from the pattern shown in the figure.  

Popping is very noticeable with discrete LOD methods, because a lot of the vertices change 
abruptly when switching to a different level of detail mesh. This disturbing effect can be 
eliminated by smooth distance based vertex morphing. 

Because Chunked LOD uses a quad tree, it is possible to build a huge world using tiled 
chunks of geometry. It is the most popular terrain rendering technique in today’s game engine. 

 

Figure 9.4 Chunked LOD terrain triangulation 

Bird view Semi-perspective view 

Gap between two levels of chunks 
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Geomipmapping 

This algorithm resembles Chunked LOD. It has the analogy in texture mipmapping. 
Consider the ordinary mipmapping technique for textures. A chain of mipmaps is created for 
each texture, the first item in the chain is the actual texture of its original size; each 
succeeding item is the previous item scaled down to half its resolution, until a desired number 
of items (levels) is reached. When a texture is at certain distance from the camera, the 
appropriate level in the mipmap chain is chosen and used for rendering instead of the actual 
high resolution texture. We can apply this concept to three-dimensional meshes. 
Geomipmapping has the same gap (crack) problem as in chunked LOD and additional 
triangles are used to repair the cracks. Figure 9.5 shows a possible triangle mesh rendered 
with geomipmapping. 

 

Figure 9.5  Geomipmapping terrain triangulation 

 

ROAM: Real-Time Optimally Adapting Mesh 

Adapting meshes is a key concept in this algorithm. In case there is no sudden change in the 
viewpoint, the algorithm is designed to exploit frame to frame coherence. It assumes that the 
mesh in the next frame will only differ in a few triangles. This means that there is no need to 
regenerate the whole mesh from scratch every frame.  

ROAM maintains two priority queues that drive the split and merge operations. The queues 
are filled with triangles, sorted by their projected screen space error. In every frame some 
triangles are split, bringing in more detail, and others are merged into coarser triangles. Since 
the triangles are progressively refined, it is possible to end the refinement at any time, 
enabling the application to maintain a stable frame rate. A traditional ROAM algorithm using 
binary triangle tree will produce mesh that looks like the left one in Figure 9.6, other modified 
version of ROAM using quad triangle tree may produce triangles that looks like the right one 
in the figure. 

The original ROAM algorithm produces the optimal (minimum triangle count) mesh, but it 
is very CPU limited. Many game engines rather use a more CPU friendly version of ROAM 
which uses a quad tree and rebuilds the mesh every frame without using priority queues.  

Gap repair 



 

 121 

 

Figure 9.6 ROAM terrain triangulation 

9.1.3 The Hybrid Terrain Algorithm 
Start from Requirement 

The choice of terrain algorithm depends on the requirement of the game engine. Our 
requirement of the terrain engine is given below.  

- Tiled terrains: tiled terrain means the game engine need to support infinitely large terrain. 
This requires that we can efficiently repair cracks on the terrain tile borders. 

- Geomorphing: We can change the shape of the terrain at real time. This requires that 
terrain height map preprocessing should be fast.  

- Multi-texturing: This requires that assigning appropriate texture coordinates to triangles 
should be fast.  

- Ray picking: we should be able to query ray-terrain intersections fast. 

- Holes: we should be able to dynamically dig holes on terrain surface, so that we can have 
caves and tunnels. See Figure 9.7.  

Starting from these requirements, we use a hybrid approach of chunked LOD and ROAM. 
It uses a quad tree to store terrain mesh at different level of details, and for every frame, it 
breadth-first traverses the quad tree to built triangles similar to the one generated by ROAM. 
See Figure 9.6 (right).  

The advantages of the hybrid approach are: 

- It is almost as fast as chunked LOD. 

- Since the triangles are progressively refined, it is possible to end the refinement at any 
time. For example, we can specify an upper limit to the number of triangles for each 
frame, so that the terrain can always be rendered using triangles less than the specified 
value.  

- It satisfied all the game requirements defined above. 

ROAM with binary tree ROAM with quad tree 
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There is an open source project called Demeter Terrain Visualization Library, which uses 
this method. The implementation in this book is based on it and improved in several places. 

 

Figure 9.7 Holes on terrain surface  

 

Implementation 

We use a terrain object to represent a latticed terrain tile. A terrain object may be adjacent 
to eight other terrain objects. We will first consider a single terrain object. See Figure 9.8. 
CGlobalTerrain is the entire (inifinitely large) terrain; Terrain is a single terrain tile object. 

 

Figure 9.8 Collaboration diagram for Terrain Object 

The terrain object can be loaded from the Terrain Config File (See Chapter 3). It uses a 
array (m_pVertices) of vectors to store the elevation (heightmap) data. The data for each LOD 
is pre-computed and stored in a quad tree data structure called m_pRootBlock. Each LOD is 
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also called a terrain block. Each terrain block contains the pre-computed the axis aligned 
bounding box (only minimum and maximum height is needed) and some other information 
shown below.  
/** it represents the quad tree node of LOD terrain data*/ 
class TerrainBlock 
{ 
 /** repair cracks in this block and child blocks. This is a recursive function.*/ 
 void CalculateGeometry(Terrain * pTerrain); 
 /** generate triangles for rendering in higher LOD. This is a recursive function. */ 
 void Tessellate(const double *pMatrixModelview, const double *pMatrixProjection, const int 
 *pViewport, TriangleStrip * pTriangleStrips, unsigned int *pCountStrips, Terrain * pTerrain); 
 /** repair cracks in this block and child blocks. This is a recursive function.*/ 
 void RepairCracks(Terrain * pTerrain, TriangleFan* pTriangleFans, unsigned int* pCountFans); 
 
 bool IsActive(); 
 int GetStride(); 
 void EnableStrip(bool bEnabled); 
 int GetHomeIndex(); 
 void VertexChanged(Terrain * pTerrain); 
 void VertexChanged(Terrain * pTerrain, int index1); 
 void VertexChanged(Terrain * pTerrain, int index1, int index2); 
 void IntersectRay(const Ray & ray, Vector & intersectionPoint, float &lowestDistance, const  
 Terrain * pTerrain); 
 /** update holes in the terrain. This will set the m_bIsHold attribute of the terrain block. This function 
will recursively call itself. Call this function when the terrain block has already been built.*/ 
 void UpdateHoles(Terrain * pTerrain); 
 
private: 
 /// quad tree data structure. 4 valid pointers for non-leaf nodes 
 TerrainBlock **m_pChildren;  
 int m_HomeIndex; 
 short int m_Stride; 
 /// whether this block is a hole. 
 bool m_bIsHole:1; 
 bool m_bIsActive:1; 
 bool m_bChildrenActive:1; 
 TriangleStrip *m_pTriangleStrip; 
 float m_MinElevation, m_MaxElevation; /// bounding box 
#if _USE_RAYTRACING_SUPPORT_ > 0 
 Triangle *m_pTriangles; 
#endif 
 friend class Terrain; 
…// some function omitted. 
}; 
Figure 9.9 shows the bounding box of quad trees. The terrain height value at the four vertices 
of each terrain block will be used to build simplified triangles at that LOD. For performance 
reasons, we also pre-compute, in each block, the index of the upper left vertex in the terrain’s 
elevation array (m_pVertices). This index is called home index to that terrain block. 
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Figure 9.9 Bounding Box and Triangles in Terrain quad tree  

The basic algorithm works as follows. It consists of the terrain initialization and rendering 
process. 
Initialization{ 

Parse Terrain Config File 
 
Load elevation data to Terrain Object{ 

Initialize Terrain::m_pVertices as an array of vectors 
Precompute quad tree (m_pRootBlock){ 
m_pVertexStatus = initialize vertex status, which is an array of bits with the same dimension 

of the heightfield.  This is used for marking vertices during data processing. 
m_pRootBlock = Recursively create Terrain Blocks and store them in a quad tree 
// recusively compute the bounding volume and home index for all blocks in a quad tree. 
m_pRootBlock  CalculateGeometry();  

} 
} 
 
Load hole map to Terrain Object as an array of Booleans. 
// Recusrively update the quad tree to set the m_bIsHole attribute for each terrain block. 
m_pRootBlock  UpdateHoles() 
 
Load Texture set 
Load texture masks 

} 
 
For each frame during rendering{ 

If(camera has not moved since last frame){ render using old triangle buffer } 
// the tessellation function will build a list of triangles 
Tessellate(){ 

// recursively tessellate the terrain and generate triangles at the proper LOD.  
m_pRootBlock->Tessellate(){ 

breadth-first traversing quad tree terrain blocks{ 
if(the block is not a hole){ 

if (block’s bounding box is inside the view frustum){ 
if(triangle count does not exceed the upper limit){ 

If(block is too big to be textured or …){ 
Inactivate the block, traverse child blocks 

}else{ 
Project the block to screen space 
If(the block is too small to be noticed){ 

add (simplified) triangles in this block to the list, do not traverse child blocks 
}else{ 

Inactivate the block, traverse child blocks 
} 

Home index: Index to upper left 
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} 
if(block is leaf node whose child need to be traversed){ 

add triangles in this leaf block to the list 
} 

}else{ 
If(block is too big to be textured or …){ 

Inactivate the block, traverse child blocks 
}else{ 

add (simplified) triangles in this block to the list, do not traverse child blocks 
} 

} 
}else{ 

Inactivate the block, do not traverse child blocks 
} 

}else{ 
Inactivate the block, do not traverse child blocks 

} 
} 

} 
} 
RepairCracks(){ 

Repair the cracks (gap) between two adjacent LOD triangle soups. 
} 
RebuildRenderBuffer(){ 

Sort triangles by texture 
} 
 
Render(){ 

Render each group of triangles with multi-texturing 
} 

} 
During each frame, we need to tessellate the terrain according to current camera viewpoint, 
repair cracks between two adjacent level-of-details, building the triangle buffer and render the 
triangles with multi-texturing.  

In the tessellation step, we will produce triangles in the pattern in Figure 9.3. In the repair 
step, we can effectively remove T-shaped junctions by changing the triangle topologies in the 
lower level of detail block as shown in Figure 9.10.  Alternatively, we can insert additional 
triangles at the crack as illustrated by Figure 9.4 and Figure 9.5.  

 T-junction will lead to gaps Repair cracks with triangle fans 
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Figure 9.10 Repair cracks in terrain triangles 

After sorting triangles by their texture, we can render them with multi-texturing. The details 
will be given next.  

9.1.4 Painting the Terrain 
In previous sections, we have shown that terrain surface is painted by alpha blending 

several texture layers. Most GPU can do 4 to 8 texture blending in a single pass. Some layer 
may have special meanings, such as shadow map (light map). Some layer may be blended 
differently, such as using bump mapping. They are all up to the engine designer’s choice for 
the way textures are blended (i.e. blending order, blending weight and method). We will see 
here our general implementation in ParaEngine.  

We define the following texture layers, all of which are optional during terrain rendering.  

name symbol TexCord Description 

Base Layer B u1,v1 Low resolution non-repeated texture, it provides 
the basic hue of the terrain.  

Dirt Layer D u2,v2 A tiled detailed or bump texture blended on the 
base layer to make it look coarser. 

Di
 u2, v2 The ith  

Alpha layer Ai  u1,v1 

Tiled detailed texture (Di) which is blended 
using an alpha map (Ai).  

The final pixel color is given by the following formula.  

0

0

0 0 1

1

{ . . , . . }
{ . , . . } . .

. (1- . . ) . ( . . )
(1- . ) . .

i i i i

i i i i i i i

i i i i i

T B rgb D rgb B a D a
T D rgb D a A a C B rgb D rgb

or
C T rgb C C D a A a D rgb D a A a
C C T a T rgb T a

−

−

= × ×⎧
⎪ = × = ×⎧⎪
⎨ ⎨= = × × + × ×⎩⎪
⎪ = × + ×⎩

 

Cn denotes the final pixel color after blending n layers. The left one can be easily matched 
to DirectX’s fixed rendering pipeline; the right one can be easily implemented in a pixel 
shader. They are functional equivalent. If pixel shader is supported, the following alternative 
blending method may be much easier to understand and implement.  

0
=1 i=0

( . . . ( . . ) ), where 1
n n

n i i i i i
i

C B rgb D rgb W D rgb D a A a W W= × × + × × × =∑ ∑  

[x].rgb means the RGB color component of the pixel, [x].a means its alpha component. 

W is the blending weight, one can use 1/iW n= or any other weight distribution. The two 
methods described above are not equivalent. In ParaEngine, we use the first method. 

For each terrain vertex, we will supply two texture coordinates (u1, v1) and (u1, v2). (u1, 
v1) is the low resolution texture coordinate for B and Ai. Images are stretched in this texture 
coordinate system. (u2, v2) is the high resolution texture coordinate for D and Di. Images are 
not stretched in this texture coordinate system. The two coordinate systems usually relate to 
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each other by an integer scale factor. In our implementation the scale factor is 16 by default. 
In other words: 

2 1 16
2 1 16

u u
v v

= ×⎧
⎨ = ×⎩

 

To minimize seams introduced by stretching, we need to enable texture clamping for B and 
Ai; and enable texture wrapping for D and Di, because they are tiled detailed textures.  

Figure 9.11 are sample images for B, D and Di.  

B  

 

Base texture 

D  

 

Dirt texture 

D1  

 

Sand texture 

D2  

 

Stone texture 

Figure 9.11 Terrain texture samples 

9.1.5 Miscellaneous Functions 
There are a few functions that we have not covered. They are terrain holes, terrain 

morphing and dynamic painting. They are not difficult to implement, we will talk about them 
briefly.  

Terrain holes 

We can create an array of Booleans called hole_map to represent whether there is a hole on 
the terrain block. Also, when pre-computing the terrain quad tree, we will mark the attribute 
bit for any block that is a hole. During terrain tessellation phase, blocks with the attribute bit 
set will not be rendered; neither will its child blocks be rendered. During ray-picking on the 
terrain surface, whenever an intersection is found, the hit point will be further checked with 
the hole_map to see if it falls into a hole.  

Terrain Geo-Morphing 
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Terrain Geo-morphing means dynamically changing the height field of the terrain. The first 
step is to modify the height field array. And then update (recompute) the affected quad-tree. 
Usually only a sub region of the terrain height field is modified, and we do not need to 
recompute the entire terrain.  

Dynamic painting 

Dynamic painting refers to editing the detailed textures (Di and Ai) on terrain surface. This 
is how we paint the mountain top with snow and stone road in front of a house, etc, in a game. 
What we paint on is actually the alpha map (mask), i.e, the Ai textures. In ParaEngine, a 
single terrain surface is covered by a grid (default is 8x8 in ParaEngine) of alpha maps, each 
of which is an 8-bit texture of 256*256 or less pixels in size.  The alpha map is made small so 
that updating them is fast and that we do not waste too much texture memory when painting 
on a small region. If the paint brush is at the boundary of two or three alpha maps, they must 
all be updated.  

9.1.6 Latticed Terrain 
So far, we have only studied the implementation for a single square terrain. We can use the 

method described above to construct terrain with height field as large as 4096*4096. This is 
enough for most game applications. However, loading a terrain that large is time consuming 
and it makes poor memory usage. Moreover, we want our terrain to be infinitely large. The 
solution is to use latticed terrain, which is a grid of single terrain objects.  

We can load terrain tiles on demand and render them separately. Latticed terrain is a grid of 
single terrain objects. The only problem to solve is that how we deal with cracks between two 
adjacent terrains in the lattice. Here we will suppose that the terrain height field is (2n+1)2

 and 
that the height fields of any adjacent terrains share the same boundary height value. Hence, 
the cracks can only result from the tessellation phase when two adjacent terrains use two 
different LOD blocks at the boundary. See Figure 9.12. 

 

Crack repair 
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Figure 9.12 Crack repair for latticed terrain 

The solution is to insert another step between the tessellation phase and the crack repair 
phase. In this inserted step, each loaded terrain will check its adjacent 8 terrains and mark on 
its boundary vertex states (the three red dots in Figure 9.12), so that during the crack repair 
stage of each terrain, it will know how to deal with it by examining the vertex states. The 
modified algorithm is given below. 
For each frame during rendering{ 

If(camera has moved since last frame){ 
For each potentially visible terrain{ 

terrain Tessellate(){} 
} 
For each potentially visible terrain{ 

For each terrain_neighbour of the 8 adjacent terrain { 
terrain UpdateByNeighbour(terrain_neighbour); 
terrain_neighbour UpdateByNeighbour(terrain); 

} 
} 
For each potentially visible terrain{ 

terrain RepairCracks(){} 
terrain  RebuildRenderBuffer (){} 

} 
} 
For each potentially visible terrain{ 

terrain Render(){} 
} 

} 
 
Terrain::UpdateByNeighbour(terrain_Neighbour){ 

Mark all boundary vertices in this terrain, which are present in the terrain_Neighbour. 
} 
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9.2 Architecture and Code 
The architecture is already introduced in above section. We will show the actual code for 

the main algorithm discussed in this chapter. 

9.2.1 Tessellation Code 
void TerrainBlock::Tessellate(const double *pMatModelView, const double *pMatProjection, const int 
*pViewport, unsigned int *pCountStrips, Terrain * pTerrain) 
{ 
 queue<TerrainBlock*> queueBlocks; 
 queueBlocks.push((TerrainBlock*)this); 
 
 /// breadth first traversing the quad tree  
 while(!queueBlocks.empty()) { 
  TerrainBlock* pBlock = queueBlocks.front(); 
  queueBlocks.pop(); 
  if(pBlock->Tessellate_NonRecursive(pMatModelView, pMatProjection, pViewport, pCountStrips, 
pTerrain)) { 
   queueBlocks.push(pBlock->m_pChildren[0]); 
   queueBlocks.push(pBlock->m_pChildren[1]); 
   queueBlocks.push(pBlock->m_pChildren[2]); 
   queueBlocks.push(pBlock->m_pChildren[3]); 
  } 
 } 
} 
 
bool TerrainBlock::Tessellate_NonRecursive(const double *pMatModelView, const double 
*pMatProjection, const int *pViewport, unsigned int *pCountStrips, Terrain * pTerrain) 
{ 
 bool bProcessChild = false; 
 if(!m_bIsHole){ 
  Box boundingBox; 
  float width = m_Stride * pTerrain->GetVertexSpacing(); 
  boundingBox.m_Min.x = pTerrain->m_pVertices[m_HomeIndex].x; 
  boundingBox.m_Min.y = pTerrain->m_pVertices[m_HomeIndex].y; 
  boundingBox.m_Min.z = m_MinElevation; 
  boundingBox.m_Max.x = boundingBox.m_Min.x + width; 
  boundingBox.m_Max.y = boundingBox.m_Min.y + width; 
  boundingBox.m_Max.z = m_MaxElevation; 
   
  if (pTerrain->CuboidInFrustum(boundingBox)){ 
   if(*pCountStrips < pTerrain->m_MaxNumberOfPrimitives) { 
    if (pTerrain->m_MaximumVisibleBlockSize < m_Stride ||  
     pTerrain->CuboidInDetailedRadius(boundingBox) ){ 
     bProcessChild = true; 
     m_bIsActive = false; 
     m_bChildrenActive = true; 
    }else { 
     // Check screen coordinates of center of each face of bounding box 
     D3DXVECTOR3 screenTop, screenBottom; 
     float halfWidth = (boundingBox.m_Max.x - boundingBox.m_Min.x) / 2; 
     // calculate z half way up the BoundingBox 
     float CenterZ = (boundingBox.m_Min.z + boundingBox.m_Max.z) * 0.5f; 
     float screenDistSqure; 
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     float faceX, faceY, faceZ; 
     // bottom face 
     faceX = boundingBox.m_Min.x + halfWidth; 
     faceY = boundingBox.m_Min.y + halfWidth; 
     faceZ = boundingBox.m_Min.z; 
     myProject(faceX, faceY, faceZ, pMatModelView, pMatProjection, pViewport, 
&screenBottom); 
     // top face 
     faceZ = boundingBox.m_Max.z; 
     myProject(faceX, faceY, faceZ, pMatModelView, pMatProjection, pViewport, &screenTop);
 
     float deltaX, deltaY;//, deltaZ; 
     deltaX = (float)(screenTop.x - screenBottom.x); 
     deltaY = (float)(screenTop.y - screenBottom.y); 
     screenDistSqure = (deltaX * deltaX + deltaY * deltaY); 
 
     if (screenDistSqure <= pTerrain->GetDetailThreshold()){ 
      // This block is simplified, so add its triangles to the list and stop recursing. 
      CreateTriangleStrip(pCountStrips, pTerrain); 
      m_bIsActive = true; 
      m_bChildrenActive = false; 
 
      // set lowest visible height 
      if(m_MinElevation < pTerrain->GetLowestVisibleHeight()) 
       pTerrain->SetLowestVisibleHeight(m_MinElevation); 
     }else{ 
      bProcessChild = true; 
      m_bIsActive = false; 
      m_bChildrenActive = true; 
     } 
    } 
    /** if it is the leave node that need to be further tessellated, build the triangles directly.*/ 
    if ((m_Stride == 2) && (m_bChildrenActive)) { 
     // set lowest visible height 
     if(m_MinElevation < pTerrain->GetLowestVisibleHeight()) 
      pTerrain->SetLowestVisibleHeight(m_MinElevation); 
 
     int offset; 
     int nWidthVertices = pTerrain->GetWidthVertices(); 
     int nLastStripCount = *pCountStrips; 
 
     pTerrain->SetVertexStatus(m_HomeIndex, 1); 
     TriangleStrip* tri_strip = pTerrain->GetSafeTriStrip(nLastStripCount); 
     tri_strip->m_pVertices[0] = m_HomeIndex; 
     offset = m_HomeIndex + nWidthVertices; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[1] = offset; 
     offset = m_HomeIndex + 1; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[2] = offset; 
     offset += nWidthVertices; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[3] = offset; 
     offset = m_HomeIndex + 2; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[4] = offset; 
     offset += nWidthVertices; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[5] = offset; 



 

 132 

     tri_strip->m_NumberOfVertices = 6; 
     tri_strip->m_bEnabled = true; 
 
     offset = nWidthVertices + m_HomeIndex; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip = pTerrain->GetSafeTriStrip(nLastStripCount+1); 
     tri_strip->m_pVertices[0] = offset; 
     offset +=  nWidthVertices; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[1] = offset; 
     offset = nWidthVertices + m_HomeIndex + 1; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[2] = offset; 
     offset += nWidthVertices; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[3] = offset; 
     offset = nWidthVertices + m_HomeIndex + 2; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[4] = offset; 
     offset += nWidthVertices; 
     pTerrain->SetVertexStatus(offset, 1); 
     tri_strip->m_pVertices[5] = offset; 
     tri_strip->m_NumberOfVertices = 6; 
     tri_strip->m_bEnabled = true; 
     tri_strip->textureId = -1; 
     *pCountStrips = nLastStripCount + 2; 
 
     m_nTriangleStripIndex = -1; 
     m_bIsActive = true; 
     m_bChildrenActive = false; 
     bProcessChild = false; 
    } 
   }//if(*pCountStrips < pTerrain->m_MaxNumberOfPrimitives) 
   else{ 
    if(pTerrain->m_MaximumVisibleBlockSize < m_Stride){ 
     bProcessChild = true; 
     m_bIsActive = false; 
     m_bChildrenActive = true; 
    }else { 
     // This block is simplified, so add its triangles to the list and stop recursing. 
     CreateTriangleStrip(pCountStrips, pTerrain); 
     m_bIsActive = true; 
     m_bChildrenActive = false; 
     // set lowest visible height 
     if(m_MinElevation < pTerrain->GetLowestVisibleHeight()) 
      pTerrain->SetLowestVisibleHeight(m_MinElevation); 
    } 
   } 
  }else{ 
   m_bIsActive = false; 
   m_bChildrenActive = false; 
  }  
 }else{ 
  m_bIsActive = false; 
  m_bChildrenActive = false; 
 } 
 return bProcessChild; 
} 
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9.2.2 Building Triangle Buffer 
The following code shows building a triangle list sorted by texture ID. Alternatively, one 

can use triangle strip with degenerate triangles to render the terrain. Using triangle strip 
means sending less data to GPU and is faster than using triangle list. Degenerate triangle is 
triangle that is not visible. It is used to concatenate disjoint triangle strips.  

 

Figure 9.13 Degenerate Triangles 

In Figure 9.13, the triangles in red are degenerate triangles (they share a vertex) and will 
not be visible. Generally speaking, concatenating triangle strips helps improve batching, and 
in the case of indexed primitives, there are fewer wasted transformations. 
/** this is the most time consuming task compared with tessellation and repair crack */ 
void TerrainBuffer::RebuildBuffer() 
{ 
 int i,j; 
 m_nNumOfTriangles = 0; // total number of vertex 
 m_textureGroups.clear(); 
 DeleteDeviceObjects(); 
 
 /// add get the total number of triangles for each texture group 
 int nCount = (int)m_pTerrain->m_CountStrips; 
 for (i = 0; i < nCount; ++i) 
 { 
  int texID = m_pTerrain->m_pTriangleStrips[i].Setup(m_pTerrain); 
  if(texID != INVALID_TEXTURE_ID) 
  { 
   set<TextureGroup, TextureGroup_less>::iterator iter; 
   pair<set<TextureGroup, TextureGroup_less>::iterator, bool> res = 
m_textureGroups.insert(TextureGroup(texID)); 
   (*(res.first)).nNumTriangles += m_pTerrain->m_pTriangleStrips[i].GetTriangleNum(); 
  } 
 } 
 nCount = (int)m_pTerrain->m_CountFans; 
 for (i = 0; i < nCount; ++i) 
 { 
  int texID = m_pTerrain->m_pTriangleFans[i].Setup(m_pTerrain); 
  if(texID != INVALID_TEXTURE_ID) 
  { 
   set<TextureGroup, TextureGroup_less>::iterator iter; 
   pair<set<TextureGroup, TextureGroup_less>::iterator, bool> res = 
m_textureGroups.insert(TextureGroup(texID)); 
   (*(res.first)).nNumTriangles += m_pTerrain->m_pTriangleFans[i].GetTriangleNum(); 
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  } 
 } 
 /// set the start triangle index of each texture group 
 int nStartIndex=0; 
 set<TextureGroup, TextureGroup_less>::iterator itCurCP, itEndCP = m_textureGroups.end(); 
 
 for( itCurCP = m_textureGroups.begin(); itCurCP != itEndCP; ++ itCurCP) 
 { 
  (*itCurCP).nStartIndex = nStartIndex; 
  nStartIndex +=(*itCurCP).nNumTriangles; 
  (*itCurCP).nNumTriangles = 0; 
 } 
 m_nNumOfTriangles = nStartIndex; 
 
 // 
 // Create a vertex buffer that contains the vertex data sorted by texture cell group 
 // 
 if(m_nNumOfTriangles>0) 
 { 
  IDirect3DDevice9* pD3dDevice = CGlobals::GetRenderDevice(); 
 
  pD3dDevice->CreateVertexBuffer(3*m_nNumOfTriangles*sizeof(terrain_vertex),  
   D3DUSAGE_DYNAMIC | D3DUSAGE_WRITEONLY, D3D9T_TERRAIN_VERTEX,  
   D3DPOOL_DEFAULT, &(m_pVertexBuffer), NULL); 
  terrain_vertex *pVertices = NULL; 
 
  m_pVertexBuffer->Lock( 0, 0, (void**)&pVertices, D3DLOCK_DISCARD ); 
 
  nCount = (int)m_pTerrain->m_CountStrips; 
  for (j = 0; j < nCount; ++j) 
  { 
   TriangleStrip* pTri = m_pTerrain->GetTriStrip(j); 
   if(pTri->IsEnabled()) 
   { 
    set<TextureGroup, TextureGroup_less>::iterator iter = 
m_textureGroups.find(TextureGroup(pTri->textureId)); 
    if(iter != m_textureGroups.end()) 
    { 
     int nTriCount = ((*iter).nStartIndex + (*iter).nNumTriangles)*3; 
     (*iter).nNumTriangles += pTri->BuildTriangles(m_pTerrain, pVertices, nTriCount); 
    } 
   } 
  } 
  nCount = (int)m_pTerrain->m_CountFans; 
  for (j = 0; j < nCount; ++j) 
  { 
   TriangleFan* pTri = m_pTerrain->GetTriFan(j); 
   set<TextureGroup, TextureGroup_less>::iterator iter = 
m_textureGroups.find(TextureGroup(pTri->textureId)); 
   if(iter != m_textureGroups.end()) 
   { 
    int nTriCount = ((*iter).nStartIndex + (*iter).nNumTriangles)*3; 
    (*iter).nNumTriangles += pTri->BuildTriangles(m_pTerrain, pVertices, nTriCount); 
   } 
  } 
  m_pVertexBuffer->Unlock(); 
 } 
} 
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9.3 Summary and Outlook 
Terrain is an important part for outdoor game engine. It may take up to 1/4 of the total 

rendering time of a moving frame in a game featuring advanced terrain rendering. Terrain 
rendering algorithm used in computer games usually uses several LOD to reduce the triangle 
count. However, an optimal LOD configuration is too CPU-time consuming to be used in 
games; hence game engine usually makes some compromise between optimal appearance and 
speed.  

Nowadays, outdoor terrain engine is usually built on height map or elevation map, which is 
essentially a 2.5D terrain. By implementing terrain holes, we can divide game world to two 
parts (above terrain and below it). Other terrain topology may be researched in the future, 
such as a closed sphere or other more complex 3D shapes.  

On the other side, outdoor terrain rendering in present game engines is far from realistic, 
due to the large dataset involved. Terrain rendering is still a very active research area. 
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Chapter 10 Ocean 

This chapter implements large scale ocean simulation and rendering with reflection and 
refraction maps in ParaEngine. Water (including ocean) simulation and rendering is a well 
studied research area. The computation complexity of ocean rendering techniques differs 
greatly. More photo-realistic ocean rendering technique can now be introduced in computer 
game engine.  In this chapter, we will see in detail one implementation which is suitable for 
current hardware. Although, there is some mathematics behind ocean rendering, the overall 
coding complex of a fair-looking ocean module is relatively low.  But for games, we will need 
to deal with more conditions, such as rendering above and below the water surface, etc.  

10.1 Foundation 
In ParaEngine, the ocean module is called ocean manager. Typically, there are two sub 

modules in it.  

- Simulation of the water surface (generating undulating height field on each frame) 

- Rendering the water surface 

a) forming triangle mesh for visualization of the surface 

b) Texturing the mesh with optic effects (such as reflection, refraction) 

In this section, we will examine the mathematics and programming techniques for each of 
the two sub modules.  

10.1.1 Simulation of Water Surface 
Water surface is simulated as a grid of height field and surface normal for each vertex.  
struct sAnimVertex{ 
   /** the height of the vertex */ 
   float zPos; 
   /** the normal of the vertex */ 
   Vector2  vNormal; 
}; 
sAnimVertex    m_Grid [ GRID_SIZE ] [ GRID_SIZE ]; 
In games, the shape of the ocean surface is mainly affected by two factors:  

- disturbance of moving objects on surface, so that player swimming on the water surface 
will leave ripples behind 

- winds, so that ocean surface never rest to peace 

They are usually simulated or approximated using very different algorithms and combined in 
the final water surface presentation. Both can be done on GPU; but for the moment, we prefer 
the flexibility of doing them on CPU.  In case of pure ocean simulation, only the second 
factor needs to be considered.   

Simulation of disturbance of moving object on water surface 

A simple way to simulate water is to solve the 2D Wave Equation on a uniform grid of 
points. It assumes that a moving object on surface will continuously generate 2D sinuous 
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waves that propagate on the surface. The 2D Wave Equation is
2 2 2

2
2 2 2( )y y yc

t x z
∂ ∂ ∂

= +
∂ ∂ ∂

, where 

x, z are 2D positions on the plane, y is the height (amplitude), the c term is the speed that the 
wave travels.  What we would like to do is to integrate the left side of the equation using some 
numerical method so that, given the height field of y in previous frames, we can integrate over 
a small time step to get the new height field for the current frame.  To be concise, we use the 
Verlet Integration Equation, which is given below.  

2
2 1 0 1( ) 2 ( ) ( ) ( )y t y t y t a t h= − +i i , where y(t) is the height of a point at time t, a(t) is the 

acceleration of the point at time t, and h is the time step, which should be a constant.  

Verlet integration requires two initial positions to start integration and that the time step 
should be a constant. We will introduce a damping factor to absorb some excess energy that 
results from the inexact numerical integration. The equation now becomes:  

2
2 1 0 1( ) 1.99 ( ) 0.99 ( ) ( )y t y t y t a t h= − +i i i                                 (1) 

The acceleration a (t) at position (x, z) can be replaced by its numerical form as 
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         (2) 

When implementing it, we will keep two height field maps in memory, one for the last 
height map y (t1), the other for the one before the last one y (t0). To compute the next height 
field y (t2), we first calculate the acceleration a (t1) with equation (2), and then calculate y (t2) 
with equation (1). This is rather straight forward. The normal for each point is calculated by 
its adjacent height values. At any time, we can disturb the water surface at any location by 
blending height field y (t1) with the shape of newly introduced disturbance sinuous wave at 
time step h.  

The simulation described above can be effectively done in GPU, where the two height 
maps are kept as textures and processed in pixel shader. The source code can be found on 
NVIDIA’s developer website.  

 

Simulation of Ocean Waves 

Unlike simple water surface simulation described above, wavy deep ocean surface are way 
too complex to be physically simulated. Hence, they are kind of “modeled” using statistical 
method. This is a much active research direction. One of the latest methods is based on using 
fast Fourier transformation (FFT) to produce tillable height map. This method is rather 
scalable and can be used not only for high-quality water animation for video, but also in real-
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time applications. This is why we have chosen it as our ocean simulation method. There is 
also a good tutorial in the game community here14 

The core idea of the FFT modeling method is that we assume that the surface waves are 
assembled from many linear waves generated by wind over an area much larger than the 
correlation length of the waves. The phases and amplitudes of these waves are in fact created 
by some predefined statistical function. For example, experimental measurements of surface-
wave statistics confirmed that water surface descriptors have Gaussian distributions. 

To implement this method, the height field of ocean surface is written as a summation of 
2D sinusoidal waves of all kinds of frequency, i.e. as Fourier series.  

2/ 2 1 / 2 1 i (u x+v z)

/ 2 / 2
h(x,z,t) H(u,v,t)

N N
N

u N v N
e

π− −

=− =−

= ∑ ∑
i i

i            (3)  

i t -i t
0 0H(u,v,t)=(H ( , ) e H (- ,- ) e )u v u vω ω+i i             (4)  

2 2g |K| g (2 /N) +(2 /N)u vω π π= =i i             (5)  

We will explain these equations. The height field is presented by a 2 2q q× gird, 
where 2q N= . h(x,z,t) is the height of the point (x, z) at time t. K= (2 /N,2 /N)u vπ π is a 
frequency domain vector, which can be understood as the direction of a 2D wave(u,v) 
traveling on the water plane; where as H(u,v,t)  is a complex number, which can be 
interpreted as the magnitude and phase of the 2D wave (u,v). The sigma integration means 
that the water plane height at position (x,z) is determined by summing up all these waves 
traveling on the ocean surface.  

In (4), H0(u,v)=H(u,v,0) is a table of initial amplitudes and phases at time t=0, which are 
generated by a random process. We use equation (5) to approximate the angular velocity for 
the wave (u,v) assuming ocean is very deep, where g is the gravitational constant.   

H(u,v,t) is the Fourier transform of h(x,y,t). If, at any given time t, we can calculate H(u,v,t) 
from equation (4) and (5) in the frequency domain, we will be able to transform it to h(x,z,t) 
using Fast Fourier Transform (FFT).  

The only unknown term left for calculating H(u,v,t) is H0(u,v). H0(u,v) is generated by 
equation (6)  

0
1( , ) ( ) ( )
2 r iH u v i P kξ ξ= +

K
                      (6)  

2 2 2/( )
4

1( ) ,where ( , ), | ( , ) |, /l kLP k A e k w k u v k u v L w g
k

−= = = =
K K KK Ki     (7)  

( , ) _ (0,1)r i Guassian randomξ ξ =          (8)  

                                                      
14 Lasse Staff Jensen and Robert Golias “Deep-Water Animation and Rendering” 
http://www.gamasutra.com/gdce/2001/jensen/jensen_01.htm  2001 
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The coefficients of H0 are Gaussian distributed random number with zero mean value and 
one standard deviation, shown in equation (8). The wave spectrum (magnitude for different 
frequency) is modeled by an analytical equation (7). The spectrum from this equation is called 
Phillip spectrum, which is initially used by Tessendorf for modeling wind-driven ocean waves. 
In equation (7), L is the largest possible wave arising from a continuous wind with speed w, g 
is the gravitational constant, w is direction of the wind and k is direction of the wave. A is a 
numeric constant globally affecting heights of the waves. The last term in the equation 

(
2

k w
K Ki ) eliminates waves moving perpendicular to the wind direction. 

For rendering the height field we need to calculate the gradient of the field to obtain normal. 
The traditional approach of computing finite difference between nearby grid points may be 
used, but it can be a poor approximation of the slope of waves with small wavelengths. 
Therefore, if we can afford it (in terms of computational power), it is better to use another 
FFT. This time evaluating the following sum:  

2/ 2 1 / 2 1 i (u x+v z)

/ 2 / 2
( , , ) h(x,z,t) N(u,v,t)

N N
N

u N v N
n x y t e

π− −

=− =−

= ∇ = ∑ ∑
i i

i       (9)  

N(u,v,t)=i (u,v) H(u,v,t)i i                                (10)  

Now we have finished with the math model. To implement it in code, we need three 
complex tables (H, N, H0) and one float table (W). The table H is for both H(u,v,t) and 
h(x,y,t). The imaginary components of H for h(x,y,t) is always 0. The table N is for both 
N(u,v,t) and n(x,y,t). The table H0 stores precalculated H0(u,v). The float table W stores pre-
calculated angular velocity ω  for all waves. The procedure of ocean simulation is given 
below.   

Initialization(Ocean Parameters){ 

 The ocean is initialized with parameters such as wind vector and maximum wave height. 

 // calculate H0(u,v) 

 For each (u,v) { 

  Generate two guassian random numbers: ( , )r iξ ξ : Equation (8) 

  Calculate Phillip Spectrum at (u,v): Equation (7) 

  Calculate H0(u,v) and fill table item in H0(u,v): Equation (6) 

  Calculate the angular frequency ω at (u,v) and fill in table W: Equation (5) 

 } 

} 

// called every frame 

FrameMove(deltaTime){ 

 t = t+ deltaTime; 

 (a) For each (u,v) { 
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  Calculate H(u,v,t) and fill table item in H(u,v) : Equation (4)  

  Calculate N(u,v,t) and fill table item in N(u,v) : Equation (10) 

 } 

 // 2D Fast Fourier Transform 

 (b) H =Vertical_FFT(H); 

 (c) H =Horizontal_FFT(H); 

 (d) N =Vertical_FFT(N); 

 (e) N =Horizontal_FFT(N); 

 (f) // … build mesh with H and N … 

 // … render the ocean … 

} 

For performance reasons, we can distribute step (a) to (f) to separate frames, so the height 
table is only generated every 6 frames. For all intermediary frames when a height table is not 
available, we can linearly interpolate between the last height table and the one before the last 
one. Nowadays, step (a) to (f) can also be done by GPU. 

10.1.2 Rendering of Water Surface 
In previous sections, we have shown how to simulation height and normal for ocean 

vertices. In this section, we will look at how to build triangle meshes and rendering them with 
reflection and refraction maps.  

 

Building Ocean Triangle Mesh 

Some LOD algorithms like in terrain engine may be used. But usually it may not worth the 
additional computation on CPU. Instead, we prefer to use tiled brutal force rendering.  The 
height field generated from ocean wave simulation is perfectly tiled, thus we can draw 
multiple instances of the same height field on tiled positions in the world. We will still need to 
remove ocean tiles that are not visible in the camera frustum. The good thing is that we only 
need to send one height table to GPU. This time, it is certainly good to use indexed triangle 
strips for the mesh, so that we can use fixed index buffers and only need to update the height 
and normal vertex buffers every few frames (remember that we can interpolate?).  

 

Rendering with Optic Effects 

Considering the reflections and refractions on the ocean surface from both above and below 
the water surface, one may misjudge the difficulty of rendering fair looking ocean.  In fact, if 
our game engine has a configurable rendering pipeline, we can easily render ocean effects 
using less than a hundred lines of GPU shader code.  But we will first look at the physics 
model behind. Here we only cover the physics of optic effects which we are going to simulate. 
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When light hits to a surface that separates two different materials (e.g. air, water), the ray is 
usually both reflected and refracted. Reflected portion of light returns to the first material 
mirrored by the surface normal n and the refracted part is transmitted into the second material. 
This is illustrated in Figure 10.1. Naturally, refraction is only modeled if the material is 
translucent. Physically, when light refracts, its direction is altered by the law of refraction, or 
Snell’s law:  

1 1 2 2sin( ) sin( )n nθ θ=  

n refers to the index of refraction and θ refers to the angle between the ray and surface 
normal. It should be noted that the change in the refracted ray’s direction is often omitted or 
modeled with some approximate distortion function. 

 

Figure 10.1 Reflection and refraction of light ray 

 

Now, we will look at how reflection and refraction are modeled and then combined to form 
the final color.  

Reflection Model:  

The most common reflection model used today is the Phong reflection model, which is a 
combination of three components: ambient, diffuse and specular.  

reflect ambient diffuse specularI I I I= + +  

( )diffuse d n n
n

I k I L N= ∑ i  

( ) p
specular s n n

n
I k I R V= ∑ i  

ambient a aI I k= i  

kd, ks are the wavelength-dependent reflection and refraction coefficients for a material, In 
refers to the intensity of a point light and ( )nL Ni  is the cosine of the angle between the 

θ 1

θ 2

n1 

n2 

Incoming ray Reflected ray 

Refracted ray 

θ 1

Normal 
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direction of the light source and surface normal. ( )nR Vi  is the cosine of the angle between 
viewing direction V and the mirror reflection direction Rn. p simulates surface roughness, 
effectively the “sharpness” or “glossiness” of the reflection. The summation is over all light 
sources. As for the ambient component, it is simply the product of the intensity of the ambient 
light Ia and material ambient property (ka).  

Adding them together, we have:  

( ( ) ( ) )p
reflect a a n d n s n

n
I I k I k L N k R V= + +∑i i i  

2( )n n nR L N L N= − i i , which is a little inefficient to evaluate. Blinn introduces a new 
vector H called “half-vector”, which eliminates the calculation of R completely. It is defined 
as the unit normal to a surface that would reflect the light Ln along V and is mathematically 
much easier to calculate than R.  

1 ( )
2

H L V= +  

By substituting R by H and adding a term for attenuation (fatt), based on the distance to the 
light source, we get the easy to evaluate reflection equation of Blinn-Phong model.  

( ( ) ( ) )p
reflect a a n att d n s n

n
I I k I f k L N k H N= + +∑i i i  

When computing the reflection component using GPU, the ambient and diffuse component 
is actually read from a pre-rendered reflection map, which is generated by mirroring the 
camera with the reflection plane and rendering the scene in to a reflection map texture. Finally 
the only specular light we will include is the light from the sun. Now the equation becomes: 

_ ( ( )) ( ) p
reflect sun sunI reflection map TexCords V I k H N= + i  

Below is a procedure of rendering reflection_map: Reflect the original camera as shown in 
Figure 10.2. Render the whole scene (except water) from this camera to the so called 
“reflection” texture.  

 

Original camera 

Reflected camera
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Figure 10.2 Camera reflection 

Figure 10.3 shows the image taken from the original camera and the image take from the 
reflected camera. Please note that when rendering the reflection map, we will use a clip plane 
slightly below the water surface to prevent objects on the other side of water from being 
rendered in to the reflection map. 

Figure 10.3 Original camera image (left) and reflection map (right) 

This technique works fine for plane water. For oscillating water, we will use the same 
reflection texture but to shift the texture mapping position according to the normal of the 
surface point. This is of course an approximate and can be done in such way: in every grid 
point of the wave, we calculate the reflection ray of its view vector in world coordinate 
system, shift a small fixed distance along this ray to obtain a new position, and then project it 
to screen space to obtain the shifted texture coordinates. So instead of rotating the water plane, 
we can imagine that the water plane is shifted by a fixed distance to form another parallel 
reflection plane. This is just an approximation See Figure 10.4.  In Figure 10.3, we will notice 
that the right image is distorted using the above method when mapped to the water surface in 
the left image. We will show the actual code later. 

 

θ 1

Water plane 
V

View (eye) vector 

θ 1

Reflected view vector
Shifted plane 

V’

Approximated incoming ray 
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Figure 10.4 Normal correction 

The last problem is that reflection and refraction on wavy water surface usually show more 
scenes than on still water surface. This will result to texture misses at the image edge as well 
as the place where water meets the land. To cover texture misses, we increase FOV (field of 
view) for the cameras used for the reflection map. In most cases, 10% larger than the main 
camera’s FOV is enough. In case there are still texture misses even with increased field of 
view, we use clamping texture addressing mode. Clamping addressing mode ensures that the 
missing texture have the same color of the edge of the texture.  

 

Refraction Model:  

The refraction map is generated similar to the reflection map using the unreflected original 
camera. The refraction map may also be distorted by the surface normal and indices of the 
two materials. However, if we do not need the optic effects of refraction map distortion, we 
can ignore the use of a refraction map and use alpha blending instead. We will see this later.  

 

Mixing the Refraction and Reflection:  

Once we have obtained the refraction and reflection color of a point on the water surface, 
we will need to mix them according to the amount of energy passed and reflected by the 
surface. This ratio is determined by Fresnel coefficient. The original physics formula is 
complex enough. 

2 2

2 2

( ) ( ( ) 1)( ) 1
2( ) ( ( ) 1)

g k k g kF k
g k k g k

⎛ ⎞− + −
= +⎜ ⎟+ − +⎝ ⎠

, where
2

22

1

, 1nk V N g k
n

⎛ ⎞
= − = + −⎜ ⎟

⎝ ⎠

K K
i , and V 

is the view vector; N is the normal of the surface. 

We approximate it with the function: 

 ( ) (1 )G k V N α−= −
K K
i , where α is coefficient corresponding to relative refraction index (see 

the following table). When rendering for games, we usually use a small α. 

n2/n1 Α 

1.1 10 

1.2 8 

1.33 7 

1.5 6 

The final formula we will use is this one: 

FinalColor = Refraction+F(k)*( Reflection- Refraction)+Specular 

In case a total reflection happens, we can elimite the refraction component. The actual code 
is given in the next section. 
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10.2 Architecture and Code 

10.2.1 Ocean Rendering Pipeline 
The render pipeline is given below. 

For each frame(){ 

 …  

 If(scene moves){ 

  Reflect the camera by the water plane 

  Set clip plane and Render scene into the reflection texture 

  Set the camera back to the original one 

  [optional] Set clip plane and Render scene into the refraction texture 

 } 

 Render the scene to back buffer. 

 … 

 RenderOcean(){ 

  Animate height and normal field 

  Render the ocean mesh with reflection and refraction map 

 } 

} 

There are two places to be careful during coding:  

(1) When the camera is reflected, objects and triangles which are initially invisible may 
become visible in the new camera. For example, the terrain engine will need to re-
tessellate and rebuild the triangle mesh according to the reflected camera view 
frustum.  

(2) When rendering the reflection map, one can choose to reflect either the scene objects 
or the camera. For example, one can build a reflection matrix P and pre-multiply it 
with the original view matrix V; this will reflect all scene objects when the new view 
matrix is applied. The disadvantage of this approach is that it makes the new view 
matrix meaningless, e.g. all triangle normals are reversed, which means that all 
meshes must reverse their default triangle winding direction when rendering the 
reflection map. Alternatively, we can reflect the camera eye, lookat and up vector 
and rebuild a valid camera view matrix. In this way, triangle winding is not affected 
and that we always have a meaningful view matrix. However, the reflection image 
should be flipped horizontally in the image space. Fortunately, this can be done 
easily in vertex shader or pixel shader. So we advise to mirror the camera instead of 
all scene objects when rendering the reflection map.  
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10.2.2 Shader code for Reflection and Refraction mapping 
The following shader code shows the reflection and refraction mapping described in this 

paper. The vertex shader interpolates between two sets of height and normal values to obtain 
the grid point’s vertex position and normal in world coordinate system.  The 
computeTextureCoord() function distorts the texture coordinate for the reflection map and it 
also adjust it according to the FOV of the reflection map. 

Please note that we did not use a refraction map in this shader code. Instead we use alpha 
blending with the render target (i.e. the backbuffer). In order to use the render target as the 
refraction map, we must render the scene (except for water) first, before the water is rendered. 
In the pixel shader, we will need to generate the reflection and specular color, as well as an 
alpha value by which the new pixel color is blended with color on the render target. If one 
uses a refraction map, the code will be more straight-forward: just turn off alpha blending, 
and add the reflection, refraction and specular term together to form the final pixel color. 
// Desc: Based on the Vertex Texture Fetch paper on Nvidia developer's website. 
//@def whether use backbuffer as refraction map.If so,  
// pixel color alpha value is used as aprox. fresnel term. 
#define ALPHA_BLENDING_REFRACTION_MAP 
 
// parameters 
const float4x4 mViewProj: VIEWPROJECTION: register(vs, c10); 
const float4 vWorldPos: worldpos; 
const float4 vCameraPos: worldcamerapos; 
const float4 sun_vec: sunvector; 
//const float4 sun_color: suncolor; 
const float4 posOffset : posScaleOffset; 
const float4 vsReflectionTexcoordScaleOffset:uvScaleOffset; 
const float4 psFresnelR0: FresnelR0; 
const half3  psTotalInternalReflectionSlopeBias : ConstVector0; 
const float4 vsNormalSign : ConstVector1; 
 
texture tex0 : TEXTURE;  
// reflection map 
sampler reflectionSampler = sampler_state  
{ 
    texture = <tex0>; 
    AddressU  = clamp;         
    AddressV  = clamp; 
    MINFILTER = LINEAR; 
    MAGFILTER = LINEAR; 
}; 
 
struct Interpolants 
{ 
  float4 positionSS                                 : POSITION;         // Screen space position 
  float2 reflectionTexCoord                         : TEXCOORD0;        // texture coordinates for reflection map 
  float3 normalWS                                   : TEXCOORD1;        // normal in world space 
  float3 eyeVectorWS                                : TEXCOORD2;        // eye vector in world space 
  float3 halfVectorWS                               : TEXCOORD3;        // half vector in world space 
}; 
 
//////////////////////////////////////////////////////////////////////////////// 
// 
//                              Vertex Shader 
// 
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//////////////////////////////////////////////////////////////////////////////// 
 
// Vertex shader Function declarations 
float2 computeTextureCoord(float4 positionWS, float3 directionWS, float distance, float2 scale, float2 
offset); 
 
Interpolants vertexShader( float2 Pos  : POSITION, 
       float ZPos0 : POSITION1, 
       float2 Norm0 : NORMAL0, 
       float ZPos1 : POSITION2, 
       float2 Norm1 : NORMAL1) 
{ 
 Interpolants o = (Interpolants)0; 
 float4 positionWS; 
 float4 flatPositionWS; 
 float3 normalWS; 
 float3 reflectionVectorWS; 
 float2 nXY; 
 float1  waveHeight; 
 // offset xy and interpolate z to get world position  
 flatPositionWS = float4(Pos.x+posOffset.z, vWorldPos.y, Pos.y+posOffset.w, 1); 
 waveHeight = lerp(ZPos0, ZPos1, posOffset.x); 
 positionWS = flatPositionWS; 
 positionWS.y += waveHeight*0.2; // make smaller wave 
 
 // transform and output 
 o.positionSS =  mul(positionWS, mViewProj); 
  
 // Output the world space normal 
 nXY = lerp(Norm0, Norm1, posOffset.x); 
 normalWS = normalize(float3(nXY, 8.0f)).xzy;// LXZ: why 8.0f, 24.0f are all OK values 
 normalWS.xyz *= vsNormalSign.x; // Flip the normal if we're under water 
 o.normalWS = normalWS; 
  
 // Output the eye vector in world space 
 o.eyeVectorWS = normalize(vCameraPos - positionWS); 
 
 // Output the half vector in world space 
 // No need to normalize because it's normalized in the pixel shader 
 o.halfVectorWS = o.eyeVectorWS + sun_vec; 
 
 //                   Calculate reflection map coordinates 
  
 // Compute the reflection vector in world space 
 reflectionVectorWS = reflect(-o.eyeVectorWS, normalWS); 
  
 // Compute the reflection map coordinates 
 o.reflectionTexCoord.xy = computeTextureCoord(positionWS, reflectionVectorWS, 0.4f, 
vsReflectionTexcoordScaleOffset.xy, vsReflectionTexcoordScaleOffset.zw); 
  
 return o; 
} 
// computeTextureCoord() takes a starting position, direction and distance in world space.  
// It computes a new position by moving the distance along the direction vector. This new 
// world space position is projected into screen space. The screen space coordinates are 
// massaged to work as texture coordinates. 
float2 computeTextureCoord(float4 positionWS, float3 directionWS, float distance, float2 scale, float2 
offset) 
{ 
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  float4 positionSS; 
 
  // Compute the position after traveling a fixed distance 
  positionWS.xyz = positionWS.xyz + directionWS * distance; 
  positionWS.w = 1.0; 
 
  // Compute the screen space position of the newly computed position 
  positionSS = mul(positionWS, mViewProj); 
 
  // Do the perspective divide 
  positionSS.xy /= positionSS.w; 
 
  // Convert screen space position from [-1,-1]->[1,1] to [0,0]->[1,1] 
  // This is done to match the coordinate space of the reflection/refraction map 
  positionSS.xy = positionSS.xy * 0.5 + 0.5; 
 
  // Account for the fact that we use a different field of view for the reflection/refraction maps. 
  // This overdraw allows us to see stuff in the reflection/refraction maps that is not visible 
  // from the normal viewpoint. 
  positionSS.xy = positionSS.xy * scale + offset; 
 
  // Flip the t texture coordinate upside down to be consistent with D3D 
  positionSS.y = 1 - positionSS.y; 
 
  // Return the screen space position as the result. This will be used as the texture coordinate 
  // for the screenspace reflection/refraction maps. 
  return(positionSS.xy); 
} 
 
//////////////////////////////////////////////////////////////////////////////// 
// 
//                              Pixel Shader 
// 
//////////////////////////////////////////////////////////////////////////////// 
 
half computeFresnel(half3 light, half3 normal, half R0); 
 
half4 pixelShader(Interpolants i) : COLOR 
{ 
 half4 specular; 
 half4 reflection; 
 half4 refraction; 
 half  fresnel; 
 half4 o; 
  
 // Normalize direction vectors 
 i.normalWS = normalize(i.normalWS); 
 i.halfVectorWS = normalize(i.halfVectorWS); 
  
 // Compute the specular term 
 specular.x = pow(max(dot(i.halfVectorWS, i.normalWS), 0), 3); 
 
 // Put a cliff in the specular function 
 if(specular.x < 0.5) 
 { 
  specular.x = 2.0 * specular.x * specular.x; 
 } 
 specular.xyz = specular.xxx * half3(0.2, 0.2, 0.2); 
 specular.w = 0; 
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 // Do the texture lookup for the reflection 
  
 //reflection = tex2D(reflectionSampler, i.reflectionTexCoord.xy); 
 reflection = tex2D(reflectionSampler, float2(1-i.reflectionTexCoord.x, i.reflectionTexCoord.y)); 
  
 // Do the texture lookup for the refraction 
 …  
 // Handle total internal reflection 
 half refractionVisibility = saturate(dot(i.eyeVectorWS, i.normalWS)); 
 refractionVisibility = saturate((refractionVisibility - psTotalInternalReflectionSlopeBias.y) * 
psTotalInternalReflectionSlopeBias.x + 
         psTotalInternalReflectionSlopeBias.z); 
 // Give some blue tint to the refraction 
 // refraction = lerp(refraction, half4(0, 0, 1, 0), .1); 
  
 // Compute the fresnel to blend the refraction and reflection terms together 
 fresnel = computeFresnel(i.eyeVectorWS, i.normalWS, psFresnelR0.x); 
  
 #ifdef ALPHA_BLENDING_REFRACTION_MAP 
 // Combine the refraction,a blue tint(0,0,0.1), reflection and specular terms 
 half alpha = 1-refractionVisibility*0.9*(1-fresnel); 
 o.xyz = reflection.xyz*fresnel+(specular.xyz + (1-alpha)*half3(0, 0, 0.1))/alpha; 
 o.w = alpha; 
 return o; 
 #else 
 // Combine the refraction, reflection and specular terms 
 return(lerp(refraction, reflection, fresnel) + specular); 
 #endif 
} 
 
 
half computeFresnel(half3 eye, half3 normal, half R0) 
{ 
  // R0 = pow(1.0 - refractionIndexRatio, 2.0) / pow(1.0 + refractionIndexRatio, 2.0); 
 
  half eyeDotNormal; 
  
  eyeDotNormal = dot(eye, normal); 
 
  // Make sure eyeDotNormal is positive 
  eyeDotNormal = max(eyeDotNormal, -eyeDotNormal); 
 
  return(R0 + (1.0 - R0) * pow(1.0 - eyeDotNormal, 4.5)); 
} 
 
//////////////////////////////////////////////////////////////////////////////// 
// 
//                              Technique 
// 
//////////////////////////////////////////////////////////////////////////////// 
technique OceanWater_vs20_ps20 
{ 
 pass P0 
 { 
  ZENABLE = TRUE; 
  ZWRITEENABLE = TRUE; 
  ZFUNC = LESSEQUAL; 
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  AlphaBlendEnable = true; 
  AlphaTestEnable = false; 
 
  // shaders 
  VertexShader = compile vs_2_0 vertexShader(); 
  PixelShader  = compile ps_2_0 pixelShader(); 
 }   
} 
 
Figure 10.5 is an image generated with the above code without using a refraction map.  

Above water surface Below water surface 

Figure 10.5 Above and under water scene without refraction map 

10.3 Summary and Outlook 
Ocean simulation and rendering techniques used in games can already generate 

approaching photorealistic scenes.  What we covered in this chapter is only one set of popular 
approaches. Still, there are a few other add-on things we have missed, such as the shorelines, 
bump mapping and under water effects, etc. Shorelines can be created by blending a special 
shoreline texture to the water surface, according to the depth of the water (see the following 
section). Bump mapping can give you the effects of high-frequency wavelets on the water 
surface. Wavy underwater effects can be achieved by a pixel shader in the image space after 
the scene has been rendered. Water interaction with the physical environment (fluid dynamics) 
is also an area which we believe future game engines will be featuring. 

10.3.1 Shorelines 
We will end this chapter by the implementation of shorelines. Please see Figure 10.6. 

Shorelines can be easily implemented by comparing the water level and the terrain height at 
each rendered pixel of the ocean surface. We will use the difference between the water and 
terrain level at each pixel to obtain a blending factor, which blends an animated shoreline 
texture with that of the original ocean color. In the figure, a static white bitmap is used as the 
shoreline texture to illustrate how it is blended with the original ocean surface.  
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Figure 10.6 Shore lines 

The above procedure can be carried out in shader programs. In the vertex shader input, we 
add an additional terrain height value for each ocean surface vertex. The vertex shader will 
output the height difference between terrain height and the water height for each vertex. This 
height difference is automatically interpolated when passed to the input of a pixel shader. In 
the pixel shader, we will use it to obtain an alpha blending factor, using the code below. 
blendfactor = (i.heightDifference+0.5)/0.5; 
if(i.heightDifference >0)  
  blendfactor = 1; 
if(i.heightDifference <-0.5) 
  blendfactor = 0; 
o.xyz = lerp(o.xyz, half3(1,1,1), alpha); // half3(1,1,1) may be replaced by a shoreline texture 

i.HeightDifference is the height difference passed to the input of a pixel shader. Blendfactor 
is the linear interpolation factor to blend the shoreline texture and the original ocean color. 0.5 
in the above code is arbitrarily chosen as the maximum shoreline water depth, beyond which 
the shoreline texture will not be painted to the ocean surface.  
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Chapter 11 Special Effects 

In this chapter, we talk about a few special effects which are commonly seen in present-day 
game engines. They are shadow, light map, environment map, local lighting, image post 
processing, per-pixel fog, billboarding and reflective surfaces. It should be pointed out that 
there are generally no standard ways to integrate them in to a game engine. Each of them has 
one or several basic techniques behind. If you are implementing a new game engine from 
scratch, we advise that you go over the basic ideas of these techniques, but postpone their 
implementations until you have a stable and robust game engine framework or a funded game 
project.  

The implementation of special effects may be easily out-dated due to the fast advancement 
of graphics hardware and techniques. It is better to consider them as add-on things to the 
game engine and plug-in them to the rendering pipeline whenever and wherever necessary.  

This chapter is organized by effects. 

11.1 Shadows 
Shadow is one of the most expensive rendering effects in games. There are also a large 
number of different techniques to generate them; yet there are no perfect ones.  

11.1.1 Static Shadow 
The least expensive way is to bake the shadow to model and terrain textures or model 

vertex colors, when the game scene is made by the artists and the level designers. This special 
texture layer generated for shadow is commonly referred to as light map, whose colors are 
usually multiplied with the original model color to darken the shadowed region. At runtime, 
the game engine computes nothing; it just renders the models as usual. The biggest advantage 
of this approach is that it is fast at runtime. The biggest problem is that it does not work 
efficiently with dynamic objects or dynamic light sources, such as an animated character or a 
moving light. Due to the high cost of other shadow techniques, static pre-generated shadow is 
still commonly used for shadows cast from static scene objects and with a relatively static 
light source. For example, the shadows of terrain and buildings under sun light.  

11.1.2 Dynamic Shadow 
The focus of this section is on other shadow techniques suitable for dynamic shadows. 

Many of the shadow generation techniques developed over the years have been used 
successfully in offline movie production. It is still challenging, however, to compute high 
quality shadows in real-time for dynamic scenes. We will only briefly discuss some methods 
suitable for interactive applications. Table 11.1 shows a comparison of some commonly used 
real-time shadow rendering algorithms. Please refer to Woo et al.'s paper 15 for a broader 
survey of shadow algorithms.  

                                                      
15 Andrew Woo, Pierre Poulin and Alain Fournier, A survey of shadow algorithms, IEEE Computer Graphics and 
Applications, vol 10 (November 1990), pp. 13-32. 
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Table 11.1 Shadow rendering algorithm comparison 

Plane Projected Shadows Projected Shadows Depth Shadow Mapping 

Quick, not much calculations 
High detail 
No self-shadowing 
no shadow receivers  

Quick, almost no calculations 
Detail depends on texture 
No self-shadowing 
Shadow receivers 

Very quick, not much calculations
Detail depends on texture 
Self-shadowing 
Shadow receivers 

Vertex Projection Shadow Volumes  Smoothies 

Slow with high-res meshes 
High Detail 
No self-shadowing 
no shadow receivers 

Slow, lots of calculations 
High detail 
Self-shadowing 
Shadow receivers  

Very quick, not much calculations
Detail depends on Smoothies 
Self-shadowing 
Shadow receivers 

In DirectX SDK, one can find source code samples using two different shadow algorithms. 
One is called shadow mapping; the other is called shadow volume. Shadow mapping is easy 
to implement and fast, but has so-called aliasing artifacts; shadow volume is computationally 
more expensive and difficult to implement, but can generate very robust (i.e. fewer artifacts) 
and good looking (even soft-edged) shadows. We will briefly explain shadow mapping and go 
in to some depth of shadow volume.  

11.1.2.1 Shadow mapping 
Shadow mapping is perhaps the most ubiquitous and easy-to-implement shadow algorithms. 
Its concept is straightforward. See Figure 11.1. The entire scene is drawn twice (in two render 
passes). In the first pass, the scene is rendered to a texture from the light's perspective. This 
texture is called a shadow map and is generated from simple vertex and pixel shaders. For 
each pixel, the pixel shader writes the pixel depth instead of the pixel color. The same pixel 
may be overwritten several times, so that when the entire scene has been rendered, the 
shadow map will contain the distances from the light position to the scene geometries. In the 
second pass, the scene is rendered from the camera’s perspective: the distance between each 
pixel and the light is generated once again and compared to the corresponding depth 
generated previously in the shadow map. If they match, then the pixel is not in shadow. If the 
distance in the shadow map is smaller, the pixel is in shadow, and the shader can darken the 
pixel color accordingly. The most suitable type of light to use with shadow maps is a spotlight 
since a shadow map is rendered by capturing the scene from a point camera position. 

The major advantage of using shadow maps over shadow volumes is efficiency since a 
shadow map only requires the scene to be rendered twice. There is no geometry-processing 
needed and no extra mesh to generate and render. An application using shadow maps can 
therefore maintain good performance regardless of the complexity of the scene. 

However, the shadow quality using shadow mapping is limited by the resolution of the 
shadow map texture and affected by the relative positions of the camera and light. E.g. blocky 
shadow edges or distinctly jagged edges frequently appear between shadowed and un-
shadowed regions due to under-sampling of the shadow map. There are improved versions to 
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the original shadow volume algorithm, such as the perspective shadow mapping, which can 
be found in NVIDIA developer network.  

 

Figure 11.1 Shadow mapping  

There are several things to take care about when implementing shadow mapping in the 
game engine.  

First thing is to build a complete list of shadow receivers and shadow casters in the 
rendering pipeline. We must not forget to include shadow caster objects outside the camera 
view frustum, because their shadows may be casted in the view frustum. A quick solution is 
to use objects within a certain radius of the current camera eye position to build the list of 
shadow casters. More over, we can use some predefined value such as 50, to limit the total 
number of shadow casters. The code in the render pipeline is given below.  
 if( m_nMaxNumShadowCasters <(int)sceneState.listShadowCasters.size()) 
 { 
  // remove shadows casters that are far from the eye position. 
  sceneState.listShadowCasters.sort(LessPostRenderObj_NoTechBatch<PostRenderObject>()); 
  int nRemoveNum = (int)sceneState.listShadowCasters.size() - m_nMaxNumShadowCasters; 
  list<PostRenderObject>::iterator itFrom = sceneState.listShadowCasters.end(); 
  for (int i=0;i<nRemoveNum;++i) 
   --itFrom; 
  sceneState.listShadowCasters.erase(itFrom, sceneState.listShadowCasters.end()); 
 } 
 // only for effect file batch 
 sceneState.listShadowCasters.sort(LessPostRenderObj<PostRenderObject>()); 

The selection of shadow receivers also plays an important role in shadow mapping. A 
fixed-sized shadow map must contain the bounding box of all shadow receivers, so the 
shadow map quality is directly relevant to the size of the bounding box of shadow receivers. 
The choice of shadow receivers is dependent on the camera mode: if the game is mainly a 
top-down view, we can include both the terrain and objects on the terrain as shadow receivers; 
if it is a free camera mode, it is sometimes only good to cast shadows on a small region of 
terrain near the camera. On either case, terrain is the most important shadow receiver.  

When rendering into the shadow map, there is another thing to take care of. It is texture 
alpha testing. We need to emulate alpha testing using alpha blending in the pixel shader if the 
shadow map render target does not support alpha testing.  

Light 

Pass 2 

Eye 

Pass 1: light map

Lit 

Un-lit 
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Figure 11.2 shows a scene rendered with shadow map (the tree leaves used texture alpha 
testing); Figure 11.3 shows the shadow map generated for it. One can find the shader code in 
the code section. 

 

Figure 11.2 A 3D scene rendered with shadow mapping in ParaEngine 

 

Original size (left image)
Zoomed (right image)  

Figure 11.3 1024*1024 sized shadow map generated from the light’s perspective 
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11.1.2.2 Shadow volume 
In shadow volume technique, the scene objects may be either shadow caster or shadow 

receiver or both. The computation complexity of shadow volume is mostly dependent on the 
number of shadow casters and has nothing to do with the number of shadow receivers. So if 
the game scene has a large number of shadow receivers (such as the terrain and buildings) and 
just a few shadow casters (the main characters), shadow volume can generate perfect shadows 
efficiently. In an actual game, one may combine the use of static shadow with that of shadow 
volumes, such that shadows cast by terrain and buildings are pre-made in light maps, whereas 
dynamic shadows of characters are generated using shadow volumes. Moreover, shadow 
volume is also suitable for multiple light sources. The quality of shadows using shadow 
volume is very high and independent of light position and shadow receivers. See Figure 11.4 

Figure 11.4 Shadow volume rendering results 

Before we go on, there are some limitations to the shadow volume method. 

There are quite a few limitations to shadow volumes, in many respects they are the 
medium-level of shadow rendering. They aren't the fastest (planar shadows generally are) and 
they don't look the best (soft shadowing/projective shadows generally look better). However, 
for the speed and features we get, they are probably the most practical to implement currently. 

An overview of the main limitations: 

1. Hardware Stencil Buffering  

The application requires the use of a stencil buffer. We need as many bits for the stencil 
buffer as possible; one may be able to work with a 1-bit stencil, but ideally either a 4 or an 8 
bit stencil buffer are preferred for more accurate shadow rendering. This is because I will 
render all shadow volumes in a batch to the stencil buffer. If these volume geometry overlap 
after projection to the 2D space, it will cause the stencil buffer to overflow. 

2. Bandwidth Intensive  

The algorithm will chew up as much graphics card bandwidth as you can throw at it, 
especially when it comes to rendering with multiple light sources. Fill rate (number of pixels 
rendered per second) in particular is very heavily used; with a possible n+1 overdraw (where 
n is the number of lights). There are a few tricks one can use to reduce the trouble this causes. 

3. No Soft Shadowing  
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The mathematical nature of a shadow volume dictates that there are no intermediary values. 
It is a Boolean operation. Pixels are either in shadow or not. Therefore one can often see 
distinct aliased lines around shadows.  

4. Complicated for Multiple Light Sources  

The majority of real-time scenes have several lights (4-5) enabled at any one point in time, 
whilst with this technique there is no limit to the number of lights (even if the device caps 
indicate a fixed number). The more lights that are enabled the slower the system goes. The 
two factors to watch out are geometric complexity (and number of meshes) and light count, 
the shadow rendering system usually uses an algorithm to select only the most important 
lights, and only the affected geometry for rendering.  

 

Implementation 

Shadow volume algorithm imposes an additional constraint for models that are animated by 
skinning (the process of blending different transformations of a vertex from nearby bones). 
The process used in hardware to skin the model must be identically replicated in software, so 
the possible silhouette determination step can find the possible silhouette of the animated 
model, not the static pose. This is a problem common to all shadow volume techniques and 
cannot be eliminated until graphics hardware is sophisticated enough to support the adjacency 
data structures needed for possible silhouette determination. In ParaEngine, skinned 
animation is by default calculated in software; if shadow volume is enabled, it becomes the 
only option for skinned animation. 

Shadow Rendering Pipeline 

1. Render the portion of the scene which will receive shadows. 
2. For each active light in the scene. {  

2.1. Build light-camera pyramid for Z-Fail testing 
2.2. For each shadow caster { 

2.2.1. Decide whether to use Z-fail or Z-pass algorithm by checking the bounding box of 
the model with the light-camera pyramid.  

2.2.2. Build shadow volume for the current shadow caster, with regard to the current light. 
If Z-fail is used, shadow volume must be capped at both front and back ends 

2.2.3. Render the shadow volumes to stencil buffer twice to mark the shaded region. Render 
method is either Z-fail or Z-pass. 

} 

2.3. Render the shadow (i.e. alpha blending a big quad of the shadow color to the screen), with 
regard to the stencil buffer 

} 

3. Render the portion of the scene that does not receive shadows. 
The following order of game scene rendering is adopted in the game engine. 

1. all shadow receivers: terrain, mesh object, etc 
2. shadow volumes of shadow casters 
3. shadow casters 
4. anything that does not receive shadows, such as particles, GUI, etc. 

Since shadows will only be cast on objects rendered previously in the pipeline, characters 
will not cast shadows on themselves, if we draw them after their shadows. Due to the nature 
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of the shadow volume algorithm, the transparent region in textures will appear to be fully 
shaded on the 3D model.  

 

Shadow Volumes Calculation 

In ParaEngine, any shadow caster class need to implement the ShadowCaster interface. For 
example, the biped scene object is a shadow caster. In its shadow caster implementation, it 
calls the BuildShadowVolume function of its associated model class. This class has the 
geometry data of the 3D model, which will be used to build the Shadow Volume. Shadow 
volume is built by firstly finding the silhouette edges (please refer to related papers on this), 
and then extruding from the model’s pivot point to infinity along the opposite light direction. 
See Figure 11.5. 

 

Figure 11.5 Shadow Volume Calculation for Directional Light 

The above shadow is incomplete, because its front cap is open. If the object is not 
transparent and the camera is not in the shadow volume, this uncapped shadow volume will 
suffice for rendering accurate shadows with Z-pass algorithm. However, when the near plane 
of the camera’s frustum intersects the shadow volume, we should swap to another 
computationally more extensive algorithm (z-fail). Complementary to Z-pass, Z-fail 
algorithm only works when the shadow volume is closed (capped) at both ends and the far 
plane of the camera does not intersect the back cap. Since the light’s angle to the ground is 
limited to well above zero in the game engine. We can eliminate the need to check if the back 
cap is outside the far plane of the camera’s frustum. However, we must close the shadow 
volume’s front cap which is why z-fail algorithm is computationally expensive. The algorithm 
in Table 11.2 is used decide when to swap to z-fail algorithm. The rules are labeled from (a) 
to (e). 

Table 11.2 Z-Fail Testing algorithm 

If(model does not have bounding box or sphere){ 

(a) we will not test screen distance. i.e. we will draw its shadow anyway 

The sun 

Object1 
Object2 

Terrain 
Shadow volume 

Extruding to infinity; back capping at a point

Directional light 

Sun rays 
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}else{ 

(b) Check if object is too small after projection to 2D screen. If so, its shadow will not be 
rendered}; 

If(model must be rendered using Z-Fail){ (c) use Z-fail} 

Else if(model intersects with Occlusion pyramid){ (d) use Z-fail} 

Else{ (e) use z-pass}; 

 

Occlusion pyramid is defined to be the shape formed by the four vertices of the camera’s 
near plane and the sun position. Figure 11.6 shows some sample test cases. Bounding box 1 
and 2 will use Z-fail algorithm by the rule (d). Bounding box 4 will not cast shadows by the 
rule (b). Bounding box 3 will use z-pass by the rule (e). 

 

Figure 11.6 Z-Fail algorithm testing 

 

Performance analysis 

The real bottlenecks in a stencil shadow volume implementation are silhouette 
determination and shadow volume rendering. The former requires a huge amount of CPU 
cycles and it worsens if the occluders had high polygon counts. The latter is a big consumer of 
invisible fill rate. One way to alleviate the CPU burden during silhouette determination is to 
use a lower polygon model of the occluder. Another effective way is to determine a new 
silhouette only every 2-4 frames. This is based on the assumption that the light's position or 
the occluder's position does not change very drastically within 2-4 frames. This assumption 
turns out to be pretty good for most cases. Another good trick is to pre-calculate all static 
shadow volumes. Moreover, shadow extrusion may also be done in HLSL shader. 

11.1.3 Code 
Some shadow mapping shader code is given below.  

For each shadow casters, its associated effect file must contain a shadow technique which 
renders the object into the shadow map. The code is usually identical and is given below. 

The sun 

Camera view vector 
Eye position

Occlusion pyramid

Bounding box 1 

Bounding box 3 

Bounding box 2 

Bounding box 4 
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void VertShadow( float4 Pos   : POSITION, 
           float2 Tex   : TEXCOORD0, 
                 out float4 oPos : POSITION, 
                 out float2 outTex : TEXCOORD0, 
                 out float2 Depth : TEXCOORD1 ) 
{ 
    oPos = mul( Pos, mWorldViewProj ); 
    outTex = Tex; 
    Depth.xy = oPos.zw; 
} 
 
float4 PixShadow( float2 inTex  : TEXCOORD0, 
     float2 Depth  : TEXCOORD1) : COLOR 
{ 
 half alpha = tex2D(tex0Sampler, inTex.xy).w; 
  
 if(g_bAlphaTesting) 
 { 
  // alpha testing 
  alpha = lerp(1,0, alpha < ALPHA_TESTING_REF); 
  clip(alpha-0.5); 
 } 
    float d = Depth.x / Depth.y; 
    return float4(d.xxx, alpha); 
} 
 
technique GenShadowMap 
{ 
    pass p0 
    { 
        VertexShader = compile vs_2_a VertShadow(); 
        PixelShader = compile ps_2_a PixShadow(); 
        FogEnable = false; 
    } 
} 
 

For each shadow receiver, we need to generate shadow texture coordinates in vertex shader, 
and sample the shadow map in the pixel shader. The code is usually identical and is given 
below. Please note, we have given the code for both hardware shadow map and traditional 
Float 32 render target.  
texture ShadowMap2 : TEXTURE;  
sampler ShadowMapSampler: register(s2) = sampler_state  
{ 
    texture = <ShadowMap2>; 
    MinFilter = Linear;   
    MagFilter = Linear; 
    MipFilter = None; 
    AddressU  = BORDER; 
    AddressV  = BORDER; 
    BorderColor = 0xffffffff; 
}; 
 
Interpolants vertexShader( float4 Pos   : POSITION, 
       float3 Norm : NORMAL, 
       float2 Tex   : TEXCOORD0) 
{ 
 Interpolants o = (Interpolants)0; 
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  // … other code ignored  
   if(g_Useshadowmap) 
    { 
  o.tex1 = mul(Pos, mLightWorldViewProj); 
    } 
 return o; 
} 
 
half4 pixelShader(Interpolants i) : COLOR 
{ 
 half4 o = {0,0,0,1}; 
  // … other code ignored 
 if(g_Useshadowmap) 
  { 
  if(g_UseShadowmapHW) 
  { 
   // hardware shadow map 
   half3 shadow    = tex2Dproj(ShadowMapSampler, i.tex2).rgb; 
   //colorDif = ((shadow*0.2+0.8) * colorDif)*0.9 + 0.1; 
   colorDif = (shadow*0.25+0.75) * colorDif; 
  } 
  else 
  { 
   // F32 shadow map 
   float2 shadowTexCoord = i.tex2.xy / i.tex2.w; 
   float  shadowTestDepth = i.tex2.z / i.tex2.w; 
   
   #ifdef MULTI_SAMPLE_SHADOWMAP 
    // transform to texel space 
    float2 texelpos = g_nShadowMapSize * shadowTexCoord; 
        
    // Determine the lerp amounts            
    float2 lerps = frac( texelpos ); 
 
    //read in bilerp stamp, doing the shadow checks 
    //shadowTestDepth = shadowTestDepth- SHADOW_EPSILON; 
    color0.x = (tex2D( ShadowMapSampler, shadowTexCoord ) >= shadowTestDepth);   
    texelpos = shadowTexCoord + float2(1.0/g_nShadowMapSize, 0); 
    color0.y = (tex2D( ShadowMapSampler, texelpos) >= shadowTestDepth);   
    texelpos = shadowTexCoord + float2(0, 1.0/g_nShadowMapSize); 
    color0.z = (tex2D( ShadowMapSampler, texelpos ) >= shadowTestDepth);   
    texelpos = shadowTexCoord + float2(1.0/g_nShadowMapSize, 1.0/g_nShadowMapSize); 
    color0.w = (tex2D( ShadowMapSampler, texelpos) >= shadowTestDepth); 
        
    // lerp between the shadow values to calculate our light amount 
    float shadow = lerp( lerp( color0.x, color0.y, lerps.x ), 
          lerp( color0.z, color0.w, lerps.x ), 
          lerps.y ); 
    lerps.x=(shadowTexCoord.x<0 || shadowTexCoord.y<0 || shadowTexCoord.x>1 || 
shadowTexCoord.y>1); 
    shadow = lerp(shadow, 1, lerps.x); 
   #else 
    float  shadowDepth = tex2D(ShadowMapSampler, shadowTexCoord); 
    float  shadow      = (shadowTestDepth <= shadowDepth); 
   #endif 
   colorDif = (shadow*0.25+0.75) * colorDif; 
  } 

} 
} 
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11.2 Light Mapping 
Ever since the days of Quake, developers have extensively used light mapping to achieve 

realistic lighting almost without any computing overhead at runtime. However, light mapping 
technique is slowly becoming out dated as computer hardware evolves and real-time per pixel 
lighting becomes possible.  

Implementing light map requires two steps (l) light map generation and (2) applying light 
maps to geometry. The first step is a complicated and time-consuming (so far, not real-time) 
process. It does not make much sense to integrate it to the game engine unless you are 
working on a powerful world editor for level designers. Instead, we can rely on other 
professional editing tools, such as 3dsmax, Maya, etc to generate them for a game scene. In 
this section, we will only focus on how light map related information can be retrieved from 
these tools, and how to apply them to geomeotry.  

11.2.1 Light Mapping Basics 
The idea of light mapping is very simple. In additional to the main diffuse texture, it maps 

another texture (so called light map) to all faces of the mesh. Each triangle face of the mesh is 
mapped to a portion of the lightmap. At realtime, a pixel on the model face is determined by 
the multiplication of the diffuse texture color and light map color. Figure 11.7 shows a light 
mapped quad mesh.  

 

Figure 11.7 Light map basics16  

Figure 11.8 shows a VR scene using light maps in ParaEngine. The buildings in the image 
are rendered with light maps, except for the windows which use a cubic environment map 
(see section 11.3) of the sky. The front statue also uses a light map, which emulates the self-
shadow on it. The trees are billboarded (see section 11.4). You can compare the light mapped 
building with the one rendered without light map in Figure 11.9.  

                                                      
16 Taken from http://www.flipcode.com/articles/article_lightmapping.shtml by Keshav Channa  
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Figure 11.8 Light map example in ParaEngine 

 

11.2.2 Consider Baked Texture First 
Before using light maps, one should always consider baking lights to the main diffuse 

texture first (i.e. using the diffuse*lightmap as the diffuse map as shown in Figure 11.7). If 
this works in your situation, why bother to use an additional light map? If the mesh model is 
small or its main diffuse texture is not reused across mesh faces, using baked texture is 
usually a better choice. Light effect can be written to the main diffuse texture either by artists 
or by ray tracing tools provided in 3dsmax or Maya, etc.  

11.2.3 When to Use Light Map 
Baked texture has its many limitations. One limitation that leads us to use light map is that 

it consumes too much texture memory for large mesh models. Large mesh models, such as 
walls and streets usually reuse the same set of textures across many mesh faces. It is very 
wasteful to map unique high resolution textures to each mesh faces. Instead, we will reuse the 
diffuse texture for faces in the mesh model (and possibly in other models as well), but use a 
unique low-resolution texture (light map) which solely encode the brightness of each mesh 
face.  
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The quality of light effect is thus very dependent on the resolution of the light map. 
Fortunately, strenching light map does not induce many glitches and is sometimes preferred to 
create smooth shadow edges and brightness transitions.  

11.2.4 Cost of Using Light Maps 
Generally speaking, using light map will double or triple the total texture file size in the 

scene, and it will increase the vertex buffer size, since the light map uses another texture 
coordinate set and causes many mesh vertices to split. When there is only a single diffuse 
texture coordinate set, a mesh vertex only need to be split when the faces sharing the vertex, 
map it to different locations on the diffuse texture. Yet, with a second texture coordinate set 
for the light map, a vertex shared by multiple faces will usually need to be splitted, since the 
model always maps each of its face to a different location on the light map. 

11.2.5 Retrieving Light Map Texture Coordinates from 3dsmax 
In 3dsmax, light map texture coordinates are in another map channel of the mesh. In 
ParaEngine, we assume that it is in the second map channel. The process of retrieving it is 
given below.  

For each face in the mesh{ 

 For each of the three face vertex in the face{ 

  Export position, normal, color, etc. 

  For each map channel of the mesh{ 

   get the index of the vertex in the map channel 

   Export the texture coordinates of the vertex using its index.  

  } 

  Export skinning information if any. 

 } 

} 

Mesh data exported from 3dsmax is then saved to model files. Besides a propritory model 
file format, most game engine also supports a public extensible file format. If it is a DirectX 
based engine, it is usually the DirectX’s X-file format. In ParaEngine, we support almost 
everything except for animated models in the original X-file format. The original X-file 
templates provide a field called FVFData, which can be used to store any FVF per-vertex data 
in the file. In case of light maps, the second UV coordinate set is saved in FVFData field. The 
DirectX extenstion library also support multiple UV sets through its X-file format (by the 
FVFData field). The only problem is that the original X-file templates do not provide a field 
to store the light map file name, so we have to do it manually in some other places or derive it 
from the main texture file name in the material template.  

The following shows an example X file. 
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xof 0303txt 0032 
// Exported by ParaEngine X file exporter V0.1 
Mesh mesh_object{ 
24; // 24 vertices  
-1.583985;0.000000;-1.284059;, 
2.540000;0.000000;1.115350;, 
-1.583985;0.000000;1.115350;, 
2.540000;0.000000;-1.284059;, 
-0.715449;2.324428;-0.897879;, 
1.902904;2.324428;0.696656;, 
1.938948;2.324428;-0.890688;, 
-0.690824;2.324428;0.719860;, 
-1.583985;0.000000;-1.284059;, 
1.938948;2.324428;-0.890688;, 
2.540000;0.000000;-1.284059;, 
-0.715449;2.324428;-0.897879;, 
2.540000;0.000000;-1.284059;, 
1.902904;2.324428;0.696656;, 
2.540000;0.000000;1.115350;, 
1.938948;2.324428;-0.890688;, 
2.540000;0.000000;1.115350;, 
-0.690824;2.324428;0.719860;, 
-1.583985;0.000000;1.115350;, 
1.902904;2.324428;0.696656;, 
-1.583985;0.000000;1.115350;, 
-0.715449;2.324428;-0.897879;, 
-1.583985;0.000000;-1.284059;, 
-0.690824;2.324428;0.719860;; 
 
12; // 12 faces  
3;0,1,2;, 
3;1,0,3;, 
3;4,5,6;, 
3;5,4,7;, 
3;8,9,10;, 
3;9,8,11;, 
3;12,13,14;, 
3;13,12,15;, 
3;16,17,18;, 
3;17,16,19;, 
3;20,21,22;, 
3;21,20,23;; 
 
MeshNormals { 
24; // 24 normals  
0.000000;-1.000000;0.000000;, 
0.000000;-1.000000;0.000000;, 
0.000000;-1.000000;0.000000;, 
0.000000;-1.000000;0.000000;, 
0.000000;1.000000;0.000000;, 
0.000000;1.000000;0.000000;, 
0.000000;1.000000;0.000000;, 
0.000000;1.000000;0.000000;, 
0.001378;0.164829;-0.986321;, 
0.000000;0.166861;-0.985980;, 
0.000865;0.165585;-0.986195;, 
0.001378;0.164829;-0.986321;, 
0.966159;0.257815;0.008211;, 
0.964430;0.264338;0.000000;, 

A light mapped box like mesh 
 
 
24 Vertex Positions 
 
There are actually only 8 
unique vertex positions. 
However, due to light 
mapping, each vertex is split 
three times for the three faces 
sharing it.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12 triangle faces 
 
Each face indexes into the 
vertex array. 
 
 
 
 
 
 
 
 
 
 
24 normals for each vertex 
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0.966744;0.255505;0.011109;, 
0.966159;0.257815;0.008211;, 
0.004557;0.173885;0.984755;, 
0.000000;0.167735;0.985832;, 
0.002875;0.171617;0.985160;, 
0.004557;0.173885;0.984755;, 
-0.935226;0.354012;0.005265;, 
-0.936743;0.350019;0.000000;, 
-0.934617;0.355581;0.007338;, 
-0.935226;0.354012;0.005265;; 
 
12; // 12 faces  
3;0,1,2;, 
3;1,0,3;, 
3;4,5,6;, 
3;5,4,7;, 
3;8,9,10;, 
3;9,8,11;, 
3;12,13,14;, 
3;13,12,15;, 
3;16,17,18;, 
3;17,16,19;, 
3;20,21,22;, 
3;21,20,23;; 
} 
MeshMaterialList { 
 1; // Number of unique materials 
 12; // Number of faces 
0,0,0,0,0,0,0,0,0,0,0,0;; 
Material { 
0.000000;0.000000;0.000000;1.000000;; 
64000.0; 
0.900000;0.900000;0.900000;; 
1.000000;0.000000;0.000000;; 
TextureFilename {"model/test/lightmap/0-ZHUA~1.dds";} 
} 
}// materials 
MeshTextureCoords { 
24; // 24 UV 
1.000000;0.971927;, 
0.034312;0.031192;, 
0.993762;0.024954;, 
0.031192;0.962569;, 
0.031192;0.962569;, 
0.993762;0.024954;, 
1.000000;0.971927;, 
0.034312;0.031192;, 
0.232200;0.782655;, 
0.702227;0.308705;, 
0.761080;0.774808;, 
0.257704;0.277317;, 
0.392147;0.677684;, 
0.587364;0.448217;, 
0.609382;0.658112;, 
0.379915;0.424975;, 
0.232200;0.782655;, 
0.702227;0.308705;, 
0.761080;0.774808;, 
0.257704;0.277317;, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mesh materials 
 
Currently, the original DirectX 
template only supports a 
single texture file name per-
vertex. However, we can 
either encode the light map 
file name into this texture file 
name or derive from it.  
 
 
 
 
24 UV coordinates  
 
This is the first set of UV 
coordinate for the diffuse 
texture. 
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0.392147;0.677684;, 
0.587364;0.448217;, 
0.609382;0.658112;, 
0.379915;0.424975;; 
}// UV 
FVFData  { 
256; // FVF code 
48; 
1056325316,1052602860, 
995417344,1035768352, 
1056325316,1035768352, 
995417344,1052602860, 
1056551874,1053374800, 
1008981770,1059832668, 
1008981770,1053374800, 
1056551874,1059832668, 
1065185444,1060668198, 
1057170974,1065185444, 
1057170974,1060668198, 
1065185444,1065185444, 
1061833938,1038936608, 
1057170974,1053103490, 
1057170974,1038936608, 
1061833938,1053103490, 
1056551874,1060599939, 
1008981770,1065117184, 
1008981770,1060599939, 
1056551874,1065117184, 
1061929694,1053741612, 
1057266730,1059870356, 
1057266730,1053741612, 
1061929694,1059870356; 
}// FVF 
}// mesh 

 
 
 
FVF per vertex data  
 
256 is the FVF code for TEX1 
which means that the 
following data will be an array 
of (float, float) for each vertex. 
 
We use the FVFData field to 
store the 24 UV coordinates 
for the light map. Data is 
saved in DWORD type during 
text-encoding. Although it is 
difficult to read by human, it 
can be parsed very fast by the 
game engine.  
 
One can also move other per-
vertex data to the FVFData 
field to slightly shorten the 
loading time of the mesh file. 
This hold true for both text 
and binary encoding.  

 

11.3 Cubic Environment Mapping  
Cubic environment mapping technique is widely used for efficiently rendering reflective or 

semi-reflective surfaces in a static scene, such as the metallic reflections on the body of a 
teapot or a car. In essence, environment mapping is a method of addressing texture maps 
using a normalized vector. Hence, it can also be used to create many interesting user-defined 
visual effects.  

Unlike spherical mapping, cubic environment mapping can be generated on the flying 
during game play. With hardware support, cubic environment mapping is now the preferred 
environment mapping method for games.  

There are already extensive articles talking about environment mapping, including the 
DirectX SDK samples. We will not cover it in details. Instead we will only point out some 
limitations and common mistakes during implementation.  

Attention on plane surfaces 

If the normals of the mesh faces do not vary much, such as on a plane surface, the surface 
will map to a very small region on the environment map, resulting in terrible strench of the 
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environment mapped textures. Special coding may alleviate the problem, but generally 
speaking, we should avoid applying environment map on large plane surfaces. 

Attention on cubic map resolution 

There is no need to use high resolution texture for cubic environment map, because it is 
mapped on a curved surface, making it hard to dinstinguish. But we need to enable mip-
mapping for the environment maps. 

Obtaining the eye-reflection vector 

Eye reflection vector is used to address the cubic map. Hence the eye reflection vector 
should be generated in the same coordinate system as the one used during cubic environment 
map generation. In most cases, we use the world coordinate system to generate the cubic 
environment map and so does the eye reflection vector. The pixel and vertex shader code is 
given below.  
In Vertex shader 
 if(g_bEnvironmentMap) 
    { 
  // Obtain the eye vector in world (cube) space 
  float3 eyeVector = normalize( worldPos-g_EyePositionW ); 
  // Compute the reflection vector and save to tex1 
  o.tex1 = normalize(reflect(eyeVector, worldNormal)); 
    } 
In Pixel shader 
 if(g_bEnvironmentMap) 
    { 
  half4 reflection = texCUBE( texCubeSampler, i.tex1 ); 
  normalColor.xyz = lerp(normalColor.rgb, reflection.rgb, g_bReflectFactor); 
    } 
 

11.4 Billboarding 
Billboarding is used for rendering objects which are always facing the camera. Sometimes, 
we can rotate all three axes to oriente a mesh to the camera, as we did for particles in the 
particle system. Sometimes, we only rotate the Y axis (or the world up axis) to orient a mesh 
to the camera, such as billboarded trees, grasses, or even 3D objects, see Figure 11.9.  
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Figure 11.9 Billboaded trees 

The downside of billboarding is that it does not look real at close distance and that dynamic 
shadows and physics does not apply to them. Billboading is rarely used for big objects in 
games now, but is still widely used in other virtual reality applications.  

11.5 Reflective Surfaces 
Reflective or semi-reflective surfaces, such as floors, mirrors, or still water can be achieved 

using the same method as we did with the ocean surface. The only difference is that we need 
to share a fixed number of reflection maps for all reflective plane objects in the scene. For 
example, if there are many reflective mesh faces at different height levels, we can choose to 
render reflection maps for the closest visible surfaces.  

Figure 11.10 shows an indoor room with semi-reflective floors rendered in ParaEngine, for 
a VR application. The building in the figure has many floors, however, the camera is only 
closet to the current floor; and so only the reflective surface on the current floor needs to be 
rendered.  
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Figure 11.10 Reflective surface 

11.6 Local Lights 
Local lights are lights which only affect a local region of the scene. A local light may be a 

point light or a spot light. All local lights have a radius property. A game world may contain 
any number of local lights. However, for performance reasons, there can only be very limited 
number of active lights for a given scene geometry. For each scene geometry, such as a 
character or a mesh, the game engine needs to automatically select the best lights which are 
affecting (near) it. The number of best lights can be limited to some predefined value, such as 
4 or 8. The light system works with both fixed function pipeline and programmable pipeline. 
See Figure 11.11. 
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Figure 11.11 Local Light and render pipeline 

 

 

Figure 11.12 Local lights example in ParaEngine 

Figure 11.12 shows an example of local lights in ParaEngine. We will explain the light effects 
in the figure. There is one mesh object, two characters and two local lights in the scene. The 
mesh object is a bar with tables and props. The shadows on the wall and the floor are baked in 
texture. Two dog characters are standing at the side of two tables, on top of which two local 
lights are positioned. One is yellow, the other is green. We have marked the light positions 
using two crystal helper meshes. The bar mesh is lit by the two local lights, as shown by the 
color of the tables in it. The two mobile characters are lit by their closest local light 
respectively. So one is under the range of the yellow light, and the other is under the influence 
of the green light.  

 

11.7 Full Screen Glow Effect 
Full screen glow effect is an image space technique to give the entire scene a fancy look. 
Glow effect is both very simple and very universal, the latter means that it can be applied to 
any stage of the rendering pipeline. There is a paper explaining it very well. It is Real-Time 
Glow by Greg James and John O’Rorke on Gamasutra, May 26, 2004. Please take a good at 
the Figure 11.13 for the visual difference before and after full screen glow effect is applied.  
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 Full screen glow is a simple version of those various visual effects created by high dynamic 
range lighting (HDR). The good news is that it can work with hardware multi-sampling (i.e. 
hardware anti-aliasing) and it does not even require a floating point render target to achieve 
its effect. The basic idea of full screen glow is given directed in the following steps. We will 
see later that all steps can be fit into one simple HLSL shader technique with multiple render 
passes.  

Because it is an image space technique, we assume one already has the scene rendered in 
the back buffer or in whatever other render-targets.  

- Copy the data from the current render target (in most cases, the back buffer) to a 
temporary texture render target of a smaller size (usually half the original size). 

- Blur this texture image using a 5*5 or 9*9 filter. Here we use a Gaussian filter, and 
blur horizontally first and then vertically.  

- Finally, blend this blurred image with the one on the original render target, and we are 
done. 
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Top is the final image with glow effect; bottom one is original image without glow effect. 

Figure 11.13 Full screen glow effect 

Figure 11.14 shows the intermediary images generated between the two in Figure 11.13. 

  

Image after 
horizontal blur 

(right one) 
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Image after 
horizontal and 

vertical blur, this 
image is blended 
with the original 

image to create the 
final result 
(left one) 

Figure 11.14 Intermediary images in full screen glow effect 

11.7.1 Code 
Here is the shader code to perform those steps. Please note that the first pass in the 

technique is not necessary if one does not encode the glow factor in to the alpha channel of 
the render target, as discussed in the paper given at the start of this section. 
// TexelIncrement should be set to 1/RRT_width and 1/RTT_height respectively for the two seperate 
convolution blur passes. 
const float2 TexelIncrements : ConstVector0; 
// Glowness controls the intensity of the glow. 0 means no glow, 1 is normal glow, 3 is three times glow. 
const float4 Glowness : ConstVector1; 
 
// texture 0 
texture GlowMap0 : TEXTURE;  
sampler GlowSamp1 : register(s0) = sampler_state  
{ 
    texture = <GlowMap0>; 
    AddressU  = CLAMP;         
    AddressV  = CLAMP; 
    AddressW  = CLAMP; 
    MIPFILTER = NONE; 
    MINFILTER = LINEAR; 
    MAGFILTER = LINEAR; 
}; 
 
// texture 1 
texture GlowMap1 : TEXTURE;  
sampler GlowSamp2 : register(s1) = sampler_state  
{ 
    texture = <GlowMap1>; 
    AddressU  = CLAMP;         
    AddressV  = CLAMP; 
    AddressW  = CLAMP; 
    MIPFILTER = NONE; 
    MINFILTER = LINEAR; 
    MAGFILTER = LINEAR; 
}; 
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struct VS_OUTPUT_BLUR 
{ 
    float4 Position   : POSITION; 
    float4 Diffuse    : COLOR0; 
    float4 TexCoord0   : TEXCOORD0; 
    float4 TexCoord1   : TEXCOORD1; 
    float4 TexCoord2   : TEXCOORD2; 
    float4 TexCoord3   : TEXCOORD3; 
    float4 TexCoord4   : TEXCOORD4; 
    float4 TexCoord5   : TEXCOORD5; 
    float4 TexCoord6   : TEXCOORD6; 
    float4 TexCoord7   : TEXCOORD7; 
    float4 TexCoord8   : COLOR1;    
}; 
 
struct VS_OUTPUT 
{ 
    float4 Position   : POSITION; 
    float4 Diffuse    : COLOR0; 
    float4 TexCoord0   : TEXCOORD0; 
}; 
 
VS_OUTPUT VS_GlowSource(float3 Position : POSITION,  
   float3 TexCoord : TEXCOORD0) 
{ 
    VS_OUTPUT OUT = (VS_OUTPUT)0; 
    OUT.Position = float4(Position, 1); 
    OUT.TexCoord0 = float4(TexCoord, 1);  
    return OUT; 
} 
 
VS_OUTPUT VS_Quad(float3 Position : POSITION,  
   float3 TexCoord : TEXCOORD0) 
{ 
    VS_OUTPUT OUT = (VS_OUTPUT)0; 
    OUT.Position = float4(Position, 1); 
    OUT.TexCoord0 = float4(TexCoord, 1);  
    return OUT; 
} 
 
VS_OUTPUT_BLUR VS_Quad_Vertical_5tap(float3 Position : POSITION,  
   float3 TexCoord : TEXCOORD0) 
{ 
    VS_OUTPUT_BLUR OUT = (VS_OUTPUT_BLUR)0; 
    OUT.Position = float4(Position, 1); 
     
    float3 Coord = float3(TexCoord.x , TexCoord.y , 1); 
    float TexelIncrement = TexelIncrements.y; 
    OUT.TexCoord0 = float4(Coord.x, Coord.y + TexelIncrement, TexCoord.z, 1); 
    OUT.TexCoord1 = float4(Coord.x, Coord.y + TexelIncrement * 2, TexCoord.z, 1); 
    OUT.TexCoord2 = float4(Coord.x, Coord.y, TexCoord.z, 1); 
    OUT.TexCoord3 = float4(Coord.x, Coord.y - TexelIncrement, TexCoord.z, 1); 
    OUT.TexCoord4 = float4(Coord.x, Coord.y - TexelIncrement * 2, TexCoord.z, 1); 
    return OUT; 
} 
 
VS_OUTPUT_BLUR VS_Quad_Horizontal_5tap(float3 Position : POSITION,  
   float3 TexCoord : TEXCOORD0) 
{ 



 

 177 

    VS_OUTPUT_BLUR OUT = (VS_OUTPUT_BLUR)0; 
    OUT.Position = float4(Position, 1); 
     
    float3 Coord = float3(TexCoord.x, TexCoord.y, 1); 
    float TexelIncrement = TexelIncrements.x; 
    OUT.TexCoord0 = float4(Coord.x + TexelIncrement, Coord.y, TexCoord.z, 1); 
    OUT.TexCoord1 = float4(Coord.x + TexelIncrement * 2, Coord.y, TexCoord.z, 1); 
    OUT.TexCoord2 = float4(Coord.x, Coord.y, TexCoord.z, 1); 
    OUT.TexCoord3 = float4(Coord.x - TexelIncrement, Coord.y, TexCoord.z, 1); 
    OUT.TexCoord4 = float4(Coord.x - TexelIncrement * 2, Coord.y, TexCoord.z, 1); 
    return OUT; 
} 
 
//////////////////////////////////////////////////////////////////////////////// 
// 
//                              Pixel Shader 
// 
//////////////////////////////////////////////////////////////////////////////// 
 
float4 PS_GlowSource(VS_OUTPUT IN) : COLOR 
{    
 float4 tex = tex2D(GlowSamp1, float2(IN.TexCoord0.x, IN.TexCoord0.y)); 
 tex.xyz = tex.xyz * tex.w; 
 return tex; 
}   
 
// For two-pass blur, we have chosen to do  the horizontal blur FIRST. The 
// vertical pass includes a post-blur scale factor. 
 
// Relative filter weights indexed by distance from "home" texel 
//    This set for 5-texel sampling 
#define WT5_0 1.0 
#define WT5_1 0.8 
#define WT5_2 0.4 
 
#define WT5_NORMALIZE (WT5_0+2.0*(WT5_1+WT5_2)) 
 
float4 PS_Blur_Horizontal_5tap(VS_OUTPUT_BLUR IN) : COLOR 
{    
    float4 OutCol = tex2D(GlowSamp1, IN.TexCoord0) * (WT5_1/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp1, IN.TexCoord1) * (WT5_2/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp1, IN.TexCoord2) * (WT5_0/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp1, IN.TexCoord3) * (WT5_1/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp1, IN.TexCoord4) * (WT5_2/WT5_NORMALIZE); 
    return OutCol; 
}  
 
float4 PS_Blur_Vertical_5tap(VS_OUTPUT_BLUR IN) : COLOR 
{    
    float4 OutCol = tex2D(GlowSamp2, IN.TexCoord0) * (WT5_1/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp2, IN.TexCoord1) * (WT5_2/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp2, IN.TexCoord2) * (WT5_0/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp2, IN.TexCoord3) * (WT5_1/WT5_NORMALIZE); 
    OutCol += tex2D(GlowSamp2, IN.TexCoord4) * (WT5_2/WT5_NORMALIZE); 
    return float4(Glowness.xyz*OutCol.xyz, Glowness.w); 
}  
 
// add glow on top of model 
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float4 PS_GlowPass(VS_OUTPUT IN) : COLOR 
{    
 float4 tex = tex2D(GlowSamp1, float2(IN.TexCoord0.x, IN.TexCoord0.y)); 
 return tex; 
}   
technique Glow_5Tap  
{ 
 pass GlowSourcePass 
    { 
  cullmode = none; 
  ZEnable = false; 
  ZWriteEnable = false; 
  AlphaBlendEnable = false; 
  AlphaTestEnable = false; 
  FogEnable = False; 
  VertexShader = compile vs_2_0 VS_GlowSource(); 
  PixelShader  = compile ps_2_0 PS_GlowSource(); 
    } 
    pass BlurGlowBuffer_Horz 
    { 
  cullmode = none; 
  ZEnable = false; 
  ZWriteEnable = false; 
  AlphaBlendEnable = false; 
  AlphaTestEnable = false; 
  FogEnable = False; 
  VertexShader = compile vs_2_0 VS_Quad_Horizontal_5tap(); 
  PixelShader  = compile ps_2_0 PS_Blur_Horizontal_5tap(); 
    } 
    pass BlurGlowBuffer_Vert 
    { 
  cullmode = none; 
  ZEnable = false; 
  ZWriteEnable = false; 
  AlphaBlendEnable = true; 
  SrcBlend = one; 
  DestBlend = zero; 
  AlphaTestEnable = false; 
  FogEnable = False; 
  VertexShader = compile vs_2_0 VS_Quad_Vertical_5tap(); 
  PixelShader  = compile ps_2_0 PS_Blur_Vertical_5tap(); 
    } 
    pass GlowPass 
    { 
  cullmode = none; 
  ZEnable = false; 
  ZWriteEnable = false; 
  AlphaBlendEnable = true; 
  SrcBlend = one; 
  DestBlend = SRCALPHA; 
  AlphaTestEnable = false; 
  FogEnable = False; 
  VertexShader = compile vs_1_1 VS_Quad(); 
  PixelShader = compile ps_2_0 PS_GlowPass();  
    } 
} 

 



 

 179 

11.7.2 Discussion 
Full screen glow effect can also be used for some other effects in the game engine, such as the 
under water effect. When the camera is under water, we can turn on the full screen effect, and 
adjust the blending factor so that the blurred image becomes dominant in the final image. 
Figure 11.15 shows the result of the glow effect which makes the underwater scene more 
convincing.  

 with glow effect 

 without glow effect. 

Figure 11.15 Under water effect using full screen glow 
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11.8 Fog Effect 
Fog effect is mainly used for outdoor scenes to fade objects in to the background color. Fog 
effect is only two lines of render state codes in fixed function pipeline and just a few lines of 
code in HLSL shader program if we are using programmable pipeline. The focus of this 
section, however, is on how to make fog looks right in a game scene, which goes beyond the 
scope of implementing fog effect itself. For example, the following situations must be dealt 
with careful in order to make the scene stay in harmony with the global fog effect. (1) Fog 
and the background sky (2) Fog with global sun lighting (3) Fog underwater (4) Fog with 
large mesh objects.  

11.8.1 Fog and Sky 
In a game scene, the distant fog color must blend into the background sky color. In this 
section, we will describe a simple way to blend distant fog color with the sky background. 
The result can be previewed in Figure 11.16.  

In a game engine, the sky background is rendered first as an ordinary mesh object with Z-
buffer disabled and origin fixed at the current camera eye position. The sky mesh object is 
usually a box, a dome or a plane, depending on the game requirement. The size of the sky 
mesh is arbitrary (unit size is fine), but since it moves with the camera, it will give the illusion 
of a sky background in the infinite distance. After rendering the sky, we retrieve the current 
distant fog color and blend it to the sky background. The blending factor should be degrading 
in the vertical direction until the fog color fully fades into the background sky color.  

No fog, No sky No fog, No fog blend on sky 
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No fog, Sky with distant fog blend Fog and Sky 

Figure 11.16 Fog and Sky using Programmable Pipeline 

11.8.1.1 Programmable Pipeline Implementation 
This effect can be done very easily in shader. The following code shows the sky shader. In 
this shader, per-pixel fog is used to paint the fog color on the sky model. Yet, instead of using 
the camera to vertex distance to generate the fog factor, we will use the y (up) component of 
the sky vertex in object space to generate it.  
Interpolants vertexShader( float4 Pos   : POSITION, 
       float3 Norm : NORMAL, 
       float2 Tex   : TEXCOORD0) 
{ 
 Interpolants o = (Interpolants)0; 
 // screen space position 
 o.positionSS =  mul(Pos, mWorldViewProj); 
 o.colorDiffuse = colorAmbient+colorDiffuse*sun_color*g_skycolorfactor; 
 o.tex.xy = Tex; 
 o.tex.z = Pos.y; // y component in object space 
 return o; 
} 
half CalcFogFactor( half d ) 
{ 
  half fogCoeff = 0; 
 fogCoeff = (d - g_fogParam.x)/g_fogParam.y; 
  return saturate( fogCoeff); 
} 
 
half4 pixelShader(Interpolants i) : COLOR 
{ 
 half4 o; 
 half4 normalColor = tex2D(tex0Sampler, i.tex.xy); 
 normalColor.xyz = normalColor.xyz*i.colorDiffuse; 
  
 if(g_bEnableFog) 
 { 
  //calculate the fog factor 
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  half fog = CalcFogFactor(i.tex.z); 
  o.xyz = lerp(g_fogColor.xyz, normalColor.xyz, fog); 
  o.w = 1.f;//lerp(normalColor.w, 0, fog); 
 } 
 else 
 { 
  o = normalColor; 
 } 
 return o; 
} 
technique SkyMesh 
{ 
 pass P0 
 { 
  // shaders 
  VertexShader = compile vs_2_a vertexShader(); 
  PixelShader  = compile ps_2_a pixelShader(); 
   
  FogEnable = false; 
 } 
} 
 

11.8.1.2 Fixed Function Pipelined Implementation 
If we are building the sky mesh procedurally in the game engine, we can achieve the same 
effect by encoding the fog factor in the alpha component of vertex color and blend the fog 
color using this alpha. However, if we are dealing with arbitrary and animated mesh, this 
method does not work. But we can still use the following method to procedurally build a fog 
mesh, render and then blend it to the sky background. This fog mesh is shown in Figure 11.17. 
Triangular strips are used to build the four sides of the fog box, the vertex color at its base has 
alpha 1.0 which is the distant fog color; whereas the color on its top has alpha 0.0 which will 
completely blend into the static sky mesh background. Triangular fans are used to build the 
bottom planes. The center vertex is moved downward for some distance to avoid collision 
with the camera eye. To make things looks real, the fog color for blending at the far end is 
brightened by some small factor say 1.1, so that viewers will be able to distinguish the 
silhouette of an appearing distant object. In case, a reviewer is looking downward from a 
mountain, the center point of the triangular fan has the exact color of the fog. 
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Figure 11.17 Fog color blending 

Figure 11.18 shows the implementation result in ParaEngine. We can observe how textures on 
the sky mesh, the fog, the terrain and other 3D objects coexist in a single scene. 

 

Figure 11.18 Fog implementation result 

11.8.2 Fog with Global Sun Lighting 
The color of the fog may need to change according to the time of day. In other word, it should 
change with the global sun lighting parameters. This can be done but using the dot product of 
the original fog color and a fog factor, which is adjusted by the ambient color of the scene.  

Camera Eye Position 

Original fog color, alpha=1 

Slightly brightened fog color, alpha 

Slightly brightened fog color, alpha=0 

Front view: 

Top view: 

Sky mesh Blending 



 

 184 

11.8.3 Fog underwater 
When the camera is under water, we will see a blurred and dimmed underwater world. In the 
Ocean chapter, we used a full screen quad to dim the entire screen. The color of this quad 
should be close to the color of the fog to make the underwater effect looks natural. See Figure 
11.15. 

11.8.4 Fog with Large Mesh Objects 
Large or medium sized mesh object can not fully disappear into the distant fog color on the 
sky mesh. As shown in Figure 11.19, the left image leaves an ugly silhouette filled with 
distant fog color, when the mesh is out of the camera view frustum or culled by the rendering 
pipeline when still inside the view frustum, its silhouette will suddenly disappear, which 
makes very abrupt changes to the graphics. The right image shows a simple remedy to this 
fog side effect.  

Ugly silhouette filled with distant fog color Nicely blended into the background 

Figure 11.19 Fog with large mesh object 

In short, it blends the color of the mesh in to the background according to its distance to the 
camera on a per-pixel basis. This blending factor can be a simple function of the fog factor, as 
shown in the following pixel shader code snippet. 

 
//calculate the fog and blending factor, o is the output color 
half fog = i.tex.z; 
o.xyz = lerp(normalColor.xyz, g_fogColor.xyz, fog); 
half BlendingFactor = saturate( (fog-0.8)*16 ); 
o.w = lerp(normalColor.w, 0, BlendingFactor); 
 

11.9 Conclusion 
In this chapter, we have shown several common effect techniques which make the 3D world 
more realistic. With programmable pipeline, we can now use and play with more special 
effects in a game than ever before. There are improved technologies that keep emerging every 
month. We highly advise you to stay connected with the online community, such as the 
developer websites maintained by NVIDIA and ATI. Another advice to lone wolf engine 
programmers is that there is actually no need to put too much effect to it until the release time, 
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since there are tons of other things to care about in order to make a game engine usable by 
others.   
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Chapter 12 Character and Animation 

One of the most difficult components in a game engine is character animation. Characters 
are the most eye-catching and interactive elements in a game. For example, we would like a 
character’s appearance to be customizable; we would like to control the body parts of a 
character separately without compromising the natural movement of the character; and we 
would like the character to act autonomously and naturally according to very few external 
commands and complex physical environment, etc. None of these things are simple to 
implement, and they usually require taking both rendering and simulation in to account.  

Chapter 12, Chapter 13 and Chapter 14 all talk about characters in a game engine. In this 
chapter, we will explain the basics of a character animation system, help developers to build 
up a basic character animation framework, and give the implementation clues to add today’s 
popular animation features. 

12.1 Foundation 

12.1.1 Background of Motion Synthesis 
When animating a character, there are three kinds of animations which are usually dealt 

with separately in a game engine system: (1) local animation, which deals with the motion of 
its major skeleton (including its global speed), (2) global animation, which deals with the 
position and orientation of the character in the scene, (3) add-on animation, which includes 
facial animation and physically simulated animation of the hair, cloth, smoke, etc. This 
chapter mainly deals with the local animation. Local animation is usually affected by the 
status of the character (such as a goal in its mind) and its perceptible vicinity (such as terrain, 
water, sounds, etc). 

The motion of a certain human character can be formulated by a set of independent 
functions of time, i.e. 0{ ( ) | 1,2,..., ; [ , ]}nf t n N t T= ∈ +∞ . These functions or variables 
typically control over 15 movable body parts arranged hierarchically, which together form a 
parameter space of possible configurations or poses. For a typical animated human character, 
the dimension of the configuration is round 50, excluding degrees of freedom in the face and 
fingers. Given one such configuration at a specified time, it is possible to render it at real-time 
with the support of current graphic hardware. Hence, the problem of human animation is 
reduced to: 

Given 0{ ( ) | 1,2,..., ; [ , ]}n cf t n N t T T= ∈ and the environment W (or workspace in robotics),  

Compute { ( ) | 1,2,..., ; [ , ]}n c cf t n N t T T T= ∈ + Δ  which should be a realistic human 
animation. 

The most commonly used motion generation technique is to simply play back previously 
stored motion clips (or short sequences of{ ( )}nf t ). The clips may be key-framed or motion 
captured, which are used later to animate a character. Real-time animation is constructed by 
blending the end of one motion clip to the start of the next one. To add flexibility, joint 
trajectories are interpolated or extrapolated in the time domain. In practice, however, they are 
only applied to situations involving minor changes to the original clips. Significant changes 
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typically lead to unrealistic or invalid motions. In fact, over 90% percent character animations 
in 3D computer games today are generated by motion blending from a bank of pre-made 
animation sequences. We will talk about primarily this method in this chapter. 

Alternatively, flexibility can be gained by adopting kinematic models that use exact, 
analytic equations to quickly generate motions in a parameterized fashion. Forward and 
inverse kinematic models have been designed for synthesizing walking motions for human 
figures. There are also several sophisticated combined methods to animate human figures, 
which generate natural and wise motions (also motion path planning) in a complex 
environment. Motions generated from these methods exhibit varying degrees of realism and 
flexibility. However, most of these works are at research level, but we believe that character 
animation in computer games will be even more intelligent than that in the near future.  

12.1.2 Introduction to Skeletal Animation 
Skeletal Animation is a technique used to pose character models. A skeleton, which is a 

hierarchy of bones, is embedded in, and attached to a character model. Once the skeleton is 
attached, the character model becomes the skin. Posing the skeleton causes the skin to be 
deformed to match the position of the underlying bones. The beauty of skeletal animation is 
that (1) all animation data are encoded in bones (2) there is just one piece of mesh (skin), 
which is shared by all animation sequences (3) there are no seams on the skin after 
deformation by the bones (4) bone animations are reusable for different skins.  

Besides skeletal animation, previous 3D games have used vertex animation and joint 
animation. In vertex animation, animation data are encoded in each vertex as position keys at 
each frame. In joint animation, a character mesh is divided in to disjoint body parts and 
animated individually, which usually create seams or overlaps between disjoint mesh parts 
during animation. Present day 3D computer games use skeletal animation technique for nearly 
all kinds of animations. We will only introduce skeletal animation is this chapter. We assume 
that you already have some non-qualitative knowledge of skeletal animation. And it is even 
better if you already know how to build skeletal animation models in 3d content creation tools, 
such as 3dsmax and Maya.  

12.1.2.1 Animation Data in Skeletal Animation 
There are two sets of data in order to construct a skeletal animation. One is a static mesh, 

which is a collection of vertices { vn } in the initial pose. Another is bones, which is a 
collection of nodes {bn} containing the node animation (trajectory) as well as a reference to 
its parent node. The reference in the bones describes the hierarchy of bone structures, as 
shown in Figure 12.1.  
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Figure 12.1 Bone, skin and bone hierarchy  

The bone’s animation data is stored in the form of scale (S), rotation (R) and translation (T) 
keys relative to its parent bone. We call it SRT keys for short. The animation data used in 
skeletal animation are usually read from model files, which in turn are exported from 3d 
content creation tools, such as 3dsmax and Maya. Obtaining the mesh and animation data 
from its authoring environment is another topic which is discussed in detail in the next 
chapter. In this chapter, we are primarily concerned with synthesizing and rendering character 
motions from these pre-made animation data.  

Now we are going to define the precise animation data format used in ParaEngine. It should 
be pointed out that there are still several slightly different ways to store animation data. What 
will be proposed next is just one of them, which we believe is both efficient and very general 
for skeletal animation.  

A bone is represented by (pivot, parent, {scale}, {rot}, {trans}), where pivot is a constant 
3D vector denoting the pivot point of the bone; parent is the index of the parent bone; {scale} 
is a set of scale keys for scaling; {rot} is a set of 4D quaternion keys for rotation; {trans} is a 
set of 3D vector keys for translation. One of the most important function on {scale}, {rot}, 
{trans} (or SRT) animation keys, is to query for the key value at a given time t. However, the 
SRT keys are built from discrete samples from a continuous function of time. In order to 
reconstruct the function value at any point in the continuous animation time range, we need to 
interpolate keys. For simplicity, we only consider linear interpolation between two adjacent 
keys.  
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The above interpolation can be used to interpolate the scale and translation keys linearly. 
For quaternion keys, we use the slerp function, which does a spherical linear interpolation 
between two quaternions k k+1f(T ), f(T )  by an amount r. See below. The code is given in the 
code section.  
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Optionally, each set of keys may contain a field specifying the interpolation method used, 
which is also exported from the 3d content creation tool. For other interpolation methods, 
such as HERMITE interpolation, additional information such as the in/out tangent must also 
be available in each key. So far, linearly interpolation is good enough for most game 
animations.  

 

12.1.2.2 Calculating Bone Transformation Matrix 
For convenience of explanation, we use P, Ms(t), Mr(t), Mt(t) to denote the corresponding 

homogenous 4x4 matrix of the pivot point translation and the SRT keys at time t for a given 
bone. (P is translation matrix from world origin to pivot point.) 

Let rM(t) denotes the relative transformation matrix, which is a matrix that brings a bone 
from its parent bone pose to the bone pose at time t. Let M(t) denotes the bone transformation 
matrix of a bone at time t. The bone transformation matrix is a matrix that brings a bone from 
its initial bone pose (which is the same pose of the static mesh) to the bone pose at time t.  

The relative transformation matrix of the bone at time t can be computed as below. All 
matrices are row major in this chapter. 

 -1rM(t)=P Ps r tM M M× × × ×  

The bone transformation matrix of a bone at time t can be computed by multiplying the 
relative bone matrix with the bone transformation matrix of its parent. If we do this 
recursively, we have: 

 
p p pp

p root i root root

M(t)=rM(t) M (t) rM(t) rM (t) M (t) ...

rM(t) rM (t) ... M (t)= rM (t), where root bone M (t)=rM (t)

× = × × =

= × × × ∏
 

rMp(t) and Mp(t) denotes the parent bone’s relative transformation matrix and the bone 
transformation matrix, and so on.  

For each bone at time t, we can compute its bone transformation matrix as described above. 
Hence we can obtain all the bone transformation matrices at time t, and then we can use them 
to transform mesh vertices to get the mesh pose at time t as described in the following section. 
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12.1.2.3 Vertex Transformation 
For each vertex in the initial mesh pose, the following information is stored. 

struct ModelVertex { 
 D3DXVECTOR3 pos; // 3D position 
 byte weights[4];  // bone weight of up to four bones 
 byte bones[4];   // bone index of up to four bones 
 D3DXVECTOR3 normal; // vertex normals 
 D3DXVECTOR2 texcoords; // texture coordinates 
 DWORD color0;  // always 0,0 if they are unused. Or they can be the second UV set. 
 DWORD color1; 
}; 

What we care about now are three parameters: pos, weights and bones. Pos is the 3D 
position of the mesh vertex in the initial mesh pose. Bones [4] are the index of up to four 
bones to which this mesh vertex is bound. Weight[4] is the bounding weights of the 
corresponding bone. Suppose the bounding weight of the ith bone for the vertex is Wi and the 
bone transformation matrix of the ith bone at time t is Mi(t), then the world position v(t) of the 
vertex at time t is given below.  

 
n n

i=0 i=0

v(t)= ( ( ) ), where 1 and n is the total number of bonesi i iM t W W× =∑ ∑  

Because most Wi is zero for a given vertex, we only keep the index and weight of up to 
four most important bones per vertex.  

For each vertex in the mesh at time t, we use the above method to calculate its position and 
render the mesh; we do this per frame with a slight increase on time t and it becomes an 
animation. For character meshes with normals, we need to exclude the position and scale keys 
when building the transform matrix. Usually we build a separate bone rotation transformation 
matrix for transforming vertex normals.  

So far, we have shown all the steps to animate a mesh on a given animation range using 
skeletal animation. Next we will show how to motion blend two animation sequences.  

12.1.3 Motion Blending  
Motion blending is the most frequently used motion synthesis techniques in today’s 

computer games. For a typical game character, artists usually make 10 to 100 animation 
sequences. They form a bank of motion clips. Motion blending is a technique to concatenate 
or blend one motion clip to another or to itself. Some common situation of motion blending in 
computer games are (1) blending the end of one animation sequence to the start of the same 
animation sequence, such as a looped standing or walking sequence (2) blending one 
animation sequence at its current play position to the start of another sequence, such as when 
a character changes from standing to running. In these situations full body motion blending is 
used; in modern computer game engine, developers may choose to blend only part of the 
character body to another animation sequence, such as separating the upper body from the 
lower body. In the latter case, we can achieve more versatile animations, such as walking 
while waving hands, etc.  

The basic implementation of motion blending is to compute two set of mesh poses 
({v1n}and {v2n}) and use weights to (linearly) interpolate between the two poses. In other 
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words, for each vertex, let v1 and v2 denotes its two poses at two different times, and let w 
denotes the blending weight (a scaler). The final blended vertex v is computed as below. 

 v1 (1.0- w) + v2 w blendedv = × ×  

Because this is a linear transform, the result is equivalent to blend v1 and v2’s bone 
transformation matrix. In other words, for each bone, we calculate the blended bone 
transformation matrix Mblended.  

 
{ }

1 2

1 2

1 2

( ) (1.0 -  )  ( )  
         (1.0 -  )   
         
we have (1.0 -  )  

blended

blended

blended

v v M w v M w
v M w M w
v M
M M w M w

= × × + × ×

= × × + ×

= ×
= × + ×

 

One way of choosing blending poses and their blending weight is given below. Suppose at 
time T, we want to change animation from animation sequence 1 to sequence 2 and the 
blending time is N seconds (such as N=0.3). In such situation, the mesh pose in sequence 1 at 
time T is used as the first blending pose in the blending operation for the next N seconds and 
the poses of sequence 2 during the time [T, T+N] are used as the second pose in the blending 
operation. The blending weight w during the time [T, T+N] linearly changes from 1 to 0. To 
use this blending method, the last played frame in sequence 1 is blended with sequence 2 until 
the blending factor becomes 0. See Figure 12.2. The same rule applies when sequence 1 and 2 
are the same sequence.  

 

Figure 12.2 Blending poses and weight choice 

Figure 12.3 shows the implementation result in ParaEngine. In the figure, the animal 
character’s standing animation is blended to the running animation sequence, as the user 
commands it to run. The animation snap shot is taken at very short interval.  

Sequence 1

T

Sequence 2

Blending weight: 1 0 
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Pose1:Standing animation  

t=T 

Pose2:Running animation 

t=T 

 

Blending Weight =1.0 

Pose1:Standing animation  

t=T 

Pose2:Running animation 

t=T+0.1s 

 

Blending Weight =0.66 

Pose1:Standing animation  

t=T 

Pose2:Running animation 

t=T+0.2s 

 

Blending Weight =0.33 

Pose1:Standing animation  

t=T 

Pose2:Running animation 

t=T+0.3s 

 

Blending Weight =0 
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Figure 12.3 Motion Blending Sample 

 

12.1.4 Character State Manager 
With motion blending, we are able to play a looped animation or smoothly change 

animation from one animation sequence to another. But we have not discussed the module 
which controls when, and how motion blending should be applied on a given character. A 
simple animation system can directly map high-level character commands, such as walk, stop, 
attack, etc to motion blending commands in the animation system. This works if there are 
only a few animation sequences and a few sequence combinations; yet, in an action RPG 
game, a character may have over a hundred of short animation sequences. A single command 
may trigger a series of animation sequences to be played and blended according to the state of 
the character. For example, consider the scenario when a character jumps down from a high 
land, safely landed, and then runs in to a water pool, it swims across the water and climbs up 
to the land. During this process, the user may just be holding the forward action key, yet the 
character must switch between various animation sequences in order to perform these actions.  

To achieve this functionality, we use another logic layer called character state manager to 
manage motion blending in the animation system. The character state manager is a variant 
finite state machine simulating the low level behavior logics of a character.  

12.1.4.1 Finite State Machine 
A finite state machine (FSM) is a model of computation consisting of a set of states, a start 

state, an input alphabet, and a transition function that maps input symbols and current states to 
a next state. Computation begins in the start state with an input string. It changes to new states 
depending on the transition function. There are many variants, for instance, machines having 
actions (outputs) associated with transitions (Mealy machine) or states (Moore machine), 
multiple start states, transitions conditioned on no input symbol (a null) or more than one 
transition for a given symbol and state (nondeterministic finite state machine), one or more 
states designated as accepting states (recognizer), etc.  

12.1.4.2 Character State Manager 
In ParaEngine, we use a state stack and a number of global states to present the state of the 

character. The following state may appear in the state stack, such as: 
enum BipedState{ 
   STATE_MOVING = 0, 
   STATE_WALK_FORWORD, 
   STATE_RUN_FORWORD, 
   STATE_WALK_LEFT, 
   STATE_WALK_RIGHT, 
   STATE_WALK_BACKWORD, 
   STATE_WALK_POINT, 
   STATE_SWIM_FORWORD, 
   STATE_SWIM_LEFT, 
   STATE_SWIM_RIGHT, 
   STATE_SWIM_BACKWORD, 
   STATE_STANDING = 100, // without speed 
   STATE_IN_WATER,   // under or in water 
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   STATE_JUMP_IN_AIR,  // in air  
   STATE_JUMP_START, 
   STATE_JUMP_END, 
   STATE_STAND, 
   STATE_TURNING, 
   STATE_ATTACK, 
   STATE_ATTACK1, 
   STATE_ATTACK2, 
   STATE_MOUNT, // mount on target 
   STATE_DANCE 
//… some are ignored 
  }; 

The global states include things like whether it is running or walking, whether it is mounted, 
a target position and facing, a timer, and some other miscellaneous states. The character state 
manager also takes a variety of action symbols as input, such as: 
enum ActionSymbols{ 
   S_STANDING = 0,  /// ensure the biped has no speed 
   S_IN_WATER,   /// make sure that the biped is in water 
   S_ON_FEET,   /// make sure that the biped is on land and on its feet 
   POP_ACTION, /// pop the current action 
   S_STAND, 
   S_WALK_FORWORD, 
   S_RUN_FORWORD, 
   S_WALK_LEFT, 
   S_WALK_RIGHT, 
   S_WALK_POINT,  // walking to a point 
   S_TURNING, 
   S_WALK_BACKWORD, 
   S_SWIM_FORWORD, 
   S_SWIM_LEFT, 
   S_SWIM_RIGHT, 
   S_SWIM_BACKWORD, 
   S_JUMP_START, 
   S_JUMP_IN_AIR, // not used. 
   S_JUMP_END, 
   S_MOUNT, 
   S_FALLDOWN, 
   S_ATTACK, 
   S_ATTACK1, 
   S_ATTACK2, 
   S_DANCE, 
   S_ACTIONKEY,  // perform the action in the action key, immediately. 
//… some are ignored 
   S_NONE 
  }; 

In the simulation of a single frame, a number of places may feed input in to the character 
state manager, such as the character physics simulation module, the user input module, the 
script module, the AI modules, etc. The character state manager has an update() function 
which is called just before a character model is animated, in which we can hard-code the state 
transition function. The state transition function will change the character state and produce 
the proper animation sequence to play next from all input action symbols in that frame; hence 
when the character model is animated, it knows which animation sequence to play and how to 
motion blend it. Some code sample can be found in the code section.  
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12.1.5 Attachment and Custom Appearance 
Nowadays, players can customize the appearance of their avatars in computer games, such 

as changing the hair style, skin color, wearing many different kinds of clothes, handling 
different weapons, etc. These effects are achieved by a mixture of the following methods 

(1) Dynamically compose the character’s model texture from a collection of texture files 
according to the user selection. Different skin colors, eye colors, etc, are achieved by 
this method. Different clothes on a character body may also be achieved in this way. 

(2) Hide and show geometry sets in the character model according to user selection. For 
example, a character model may contain geometry sets for all supported hair styles, 
while it only shows the one selected by the user at render time. For another example, 
a character may have a robe geometry which is only shown when the character is 
wearing a robe.  

(3) Textures of some geometries can be replaced by the one selected by the user. This is 
similar to the first one; but it does not require dynamically composing texture object, 
which has some computation overhead.  

(4) Attach external mesh objects to bones of the main character. Weapons, irregular 
shaped armories, etc are usually achieved in this way. 

(5) Use a different character model. One can not change a male into a female from the 
above methods; hence, it is better to use a completely different model if we can not 
customize it. 

Managing character appearance might require a light-weight database system, because we 
need to keep additional information for every attachable mesh object and every character 
mesh. For example, for each attachable mesh, such as a red robe, we need to know which 
geometry sets (geosets) on the main character model need to be displayed when the robe is 
attached and we also need to know if the red robe requires that some replaceable textures on 
the character body also be changed to some pre-designed textures, so that they match the 
color of the robe. If there are thousands of attachable models in a game, using a database to 
store the additional information is a good choice.  

 In ParaEngine, we use a data provider class called CharacterDB to interface the game 
engine’s character animation system to the character database. For example, the database 
provider class may expose the following query functions to the animation system. 
/** Get race ID from name 
return true if the record is found in database. */ 
bool GetRaceIDbyName(const string& racename, int& id); 
 
/** get the model ID from model asset file name 
return true if the record is found in database. */ 
bool GetModelIDfromModelFile(const string& sModelFile, int& modelid, int& modeltype); 
 
/** get the replaceable texture group for the specified index. 
return true if the model is found.but it does not mean that the skin ID is found.  
@param bFound: whether found */ 
bool GetReplaceTexturesByModelIDAndSkinID(int modelid, int skinIndex, string& sReplaceTexture0, 
string& sReplaceTexture1, string& sReplaceTexture2, bool& bFound); 
 
/** get the character's skin textures with a specified section type and section number. 



 

 196 

return true if the record is found in database. */ 
bool GetCharacterSkins(int race, int gender, int nSectionType, int nSection, int skinColor, string& 
sSkinTexture0, string& sSkinTexture1, string& sSkinTexture2); 
 
/** get the hair style geoset. 
return true if the record is found in database. */ 
bool GetFacialHairGeosets(int race, int gender, int hairStyle, int& geoset); 
 
/**  get item's model type and model id by its item id.  
return true if the record is found in database. */ 
bool GetModelIDfromItemID(int itemid, int& nItemType, int&nItemModelID); 
 
/** get item display information by its model item id. The display information will describe how the item 
(equipment) is displayed on the body of a character.  
return true if the record is found in database. */ 
bool GetModelDisplayInfo(int nItemModelID, int GeosetA, int GeosetB, int GeosetC, 
 string& skin, string& TexArmUpper, string& TexArmLower, string& TexHands, string& 
TexChestUpper, string& TexChestLower, string& TexLegUpper, string& TexLegLower,string& TexFeet);
//… some functions are ignored here 

12.2 Architecture 
In ParaEngine, there are three major classes for character animation. They are CParaXModel, 
CParaXAnimInstance and CBipedStateManager. They are explained in the following sections 
separately. 

12.2.1 Model File 
CParaXModel presents a loaded model file, which contains the model mesh, bones and bone 
animation data, etc. There is a class called CParaXSerializer which is used to parse a 
character model file and construct the corresponding CParaXModel object. Two of the most 
important functions exposed by the CParaXModel class are Animate() and Draw(). They are 
usually called in pair by each character instance. The Animate function calculate all motion 
blended bone transformation matrices used by the animation and the Draw function 
transforms all visible vertices by their related bone matrices to get the right animation pose 
and renders the mesh. Calculation in the Draw function can be done both in CPU and GPU. 
When doing the calculation on GPU, bone transformation matrices are uploaded to GPU 
registers or buffers which are used by the vertex shader.  

12.2.2 Animation Instance 
There may be many character instances in the scene sharing the same main model file. Each 
character instance is associated with an animation instance, which contains the information of 
the custom appearance of the character model (also its attached models if any) as well as the 
animation frames to play. Whenever the render pipeline ask a character to render itself, it first 
finds its associated animation instance; the animation instance will update its associated 
model file object(s) according to its custom appearance and animation parameters, such as 
motion blending frame numbers; finally the model file object(s)’ animate and draw method 
are called to render the mesh in the requested motion blended pose. Each animation instance 
class may work with one or several kinds of model files. In ParaEngine, 
CParaXAnimInstance class is the animation instance class working with both animated and 
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static models stored in CParaXModel model file. The relationships between these classes are 
given in Figure 12.4. 

 

Figure 12.4 Relationships between character animation modules 

12.2.3 State Manager 
Character state manager is discussed in section 12.1.4.2. CBipedStateManager is a special 
implementation of a character state manager. It is mainly written for humanoid models. A 
humanoid model is characterized by some special bone structures in the model files, such as 
the neck bone, the waist bone, etc and also by some predefined animation sequences in the 
model file, such as walk, turn, jump, swim, etc. One may develop different state managers for 
different model types, such as for wheeled vehicle models or ship models, etc.  

12.3 Code and Performance Discussion 
Some useful code snippets used in this chapter are given.  

12.3.1 Spherical Linear Interpolation of Quaternion 
Here is the slerp function code for interpolating quaternion animation keys.  
static const Quaternion slerp(const float r, const Quaternion &from, const Quaternion &to) 
 { 
  float to1[4]; 
  float   omega, cosom, sinom; 
  float   scale0, scale1; 
 
  cosom = from.x * to.x + from.y * to.y + from.z * to.z 
   + from.w * to.w; 
 

Animation 

Character Instance

State Manager 

Animation 

Character Instance

State Manager 

Model File 
Upper level modules 

Animate and draw 

Physics 

Script Engine 

User Input 
Model File 

Scene objects 



 

 198 

  // adjust signs (if necessary) 
  if ( cosom < 0.0 ) 
  { 
   cosom = -cosom; 
 
   to1[0] = - to.x; 
   to1[1] = - to.y; 
   to1[2] = - to.z; 
   to1[3] = - to.w; 
  } else  { 
   to1[0] = to.x; 
   to1[1] = to.y; 
   to1[2] = to.z; 
   to1[3] = to.w; 
  } 
 
  // calculate coefficients 
  if ( cosom < 0.9995f )  
  { 
   // standard case (slerp) 
   omega = acosf(cosom); 
   sinom = sinf(omega); 
   scale0 = sinf((1.0f - r) * omega) / sinom; 
   scale1 = sinf(r * omega) / sinom; 
  } else {         
   // if "from" and "to" quaternions are very close, interpolate directly 
   scale0 = 1.0f - r; 
   scale1 = r; 
  } 
  // calculate final values 
  Quaternion res; 
  res.x = scale0 * from.x + scale1 * to1[0]; 
  res.y = scale0 * from.y + scale1 * to1[1]; 
  res.z = scale0 * from.z + scale1 * to1[2]; 
  res.w = scale0 * from.w + scale1 * to1[3]; 
  return res; 
 } 

12.3.2 Retrieving Animation Keys 
We can use a template class for storing and retrieving scale, rotation and translation keys. See 
below. 
typedef std::pair<int, int> AnimRange; 
 
template <class T> 
class AnimatedKey { 
public: 
 
 bool used; 
 int type, seq; 
 
 std::vector<AnimRange> ranges; 
 std::vector<int> times; 
 std::vector<T> data; 
// ..method ignored 
} 
Animation keys are stored in indexed time and value arrays, such that a stored key at index N 
can be retrieve as (times[N], data[N]). Animation sequences are stored in an array of 
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AnimRange objects. For a given animation sequence index K, ranges[K].first, 
ranges[K].second are the index of the first and last key index in the time and data array.  

Specific animation keys such as translation and rotation keys are instantiated like this:   
AnimatedKey<D3DXVECTOR3> translationKeys; 
AnimatedKey<Quaternion> rotationKeys; 
 

In order to retrieve a given key from a given animation sequence at a given time, we can 
perform a binary search on the time range of the given sequence. The code is given below. 
Please note that we have shown two versions in the code, the first getValue() function 
returned the non-motion blended key value, whereas the second one returns a motion blended 
key value.  
class AnimatedKey{ 
public: 
 
 /** this function will return the interpolated animation vector at the specified anim id and frame 
number*/ 
 T getValue(int anim, int time) 
 { 
  if (type != INTERPOLATION_ TYPE_NONE || data.size()>1) { 
   AnimRange range; 
 
   // obtain a time value and a data range 
   if (seq!=-1) { 
    /// global animation has nothing to do the current animation. Such animation may be  
    /// the blinking of eyes and some effects which always loops regardless of the sequence. 
    if (globals[seq]==0)  
     time = 0; 
    else  
     time = globalTime % globals[seq]; 
    range.first = 0; 
    range.second = (uint32)(data.size())-1; 
   } else { 
    /// get the range according to the current animation. 
    range = ranges[anim]; 
    // there is a chance that time = times[times.size()-1] 
    //time %= times[times.size()-1]; // I think this might not be necessary? 
   } 
 
    if (range.first != range.second) { 
    size_t pos=range.first; // this can be 0. 
    { 
     /** use binary search for the time frame */ 
     int nStart = (int)range.first; 
     int nEnd = (int)range.second-1; 
     while(true) 
     { 
      if(nStart>=nEnd) 
      { // if no item left. 
       pos = nStart;  
       break; 
      } 
      int nMid = (nStart+nEnd)/2; 
      int startP=(times[nMid]); 
      int endP=(times[nMid+1]); 
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      if(startP <= time && time < endP ) 
      { // if (middle item is target) 
       pos = nMid; 
       break; 
      } 
      else if(time < startP ) 
      { // if (target < middle item) 
       nEnd = nMid; 
      } 
      else if(time >= endP) 
      { // if (target >= middle item) 
       nStart = nMid+1;  
      } 
     }// while(nStart<=nEnd) 
    } 
    int t1 = times[pos]; 
    int t2 = times[pos+1]; 
    float r = (time-t1)/(float)(t2-t1); 
 
    if (type == INTERPOLATION_ TYPE_LINEAR) return 
interpolate<T>(r,data[pos],data[pos+1]); 
    else if (type == INTERPOLATION_NONE){ 
     return data[pos]; 
    } 
    else { 
     // INTERPOLATION_TYPE_HERMITE is only used in cameras  
     return interpolateHermite<T>(r,data[pos],data[pos+1],in[pos],out[pos]); 
    } 
   } else { 
    return data[range.first]; 
   } 
  } else { 
   // default value 
   return data[0]; 
  } 
 } 
 
 /** 
 * get key value with motion blending with a specified blending frame. 
 * @param nCurrentAnim: current animation sequence ID 
 * @param currentFrame: an absolute ParaX frame number denoting the current animation frame. It is 
always within 
 * the range of the current animation sequence's start and end frame number. 
 * @param nBlendingAnim: the animation sequence with which the current animation should be 
blended. 
 * @param blendingFrame: an absolute ParaX frame number denoting the blending animation frame. 
It is always within 
 * the range of the blending animation sequence's start and end frame number. 
 * @param blendingFactor: by how much the blending frame should be blended with the current 
frame.  
 */ 
 T getValue(int nCurrentAnim, int currentFrame, int nBlendingAnim, int blendingFrame, float 
blendingFactor) 
 { 
  if(blendingFactor == 0.0f) 
  { 
   return getValue(nCurrentAnim, currentFrame); 
  } 
  else 
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  { 
   if(blendingFactor == 1.0f) 
   { 
    return getValue(nBlendingAnim, blendingFrame); 
   } 
   else 
   { 
    T v1 = getValue(nCurrentAnim, currentFrame); 
    T v2 = getValue(nBlendingAnim, blendingFrame); 
     
    return interpolate<T>(blendingFactor,v1,v2); 
   } 
  } 
 } 
} 

12.3.3 Animation Instance Interface 
Animation Instance keeps information about the custom appearance and animation parameters 
for a character instance. It contains a member of CharModelInstance, which contains the 
custom appearance attributes and body attachments. This member is only valid if the 
animation instance is for customizable character model, other than a non-customizable model.  
Class CparaXAnimInstance : 
  public CAnimInstanceBase 
 { 
 public: 
  CParaXAnimInstance(void); 
  ~CParaXAnimInstance(void); 
 
 public: 
   
  /** defines the model type that this instance holds*/ 
  enum ModelType{  
   /** the character model is a fully customizable model for human shaped animation model 
   * one can change the skin, attachments, clothings, hair and facial styles, etc */ 
   CharacterModel=0,  
   /** Fixed model is a model which is not customizable, but can contain a list of animations to play 
   * such as a flying flag, etc.*/ 
   FixedModel=1  
  }; 
 
 /** model animation information */ 
 public: 
  /** current animation index, this is different from sequence ID */ 
  int nCurrentAnim; 
  /** an absolute ParaX frame number denoting the current animation frame. It is always within 
  * the range of the current animation sequence's start and end frame number. */ 
  int currentFrame;  
  /** the next animation index.if it is -1, the next animation will  
  * depends on the loop property of the current sequenc; otherwise, the animation specified 
  * by the ID will be played next, after the current animation reached the end. */ 
  int nNextAnim; 
 
  /** the animation sequence with which the current animation should be blended. */ 
  int nBlendingAnim;  
  /** an absolute ParaX frame number denoting the blending animation frame. It is always within 
  * the range of the blending animation sequence's start and end frame number. */ 
  int blendingFrame; 
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  /** by how much the blending frame should be blended with the current frame.  
  * 1.0 will use solely the blending frame, whereas 0.0 will use only the current frame. 
  * [0,1), blendingFrame*(blendingFactor)+(1-blendingFactor)*currentFrame */ 
  float blendingFactor; 
 
 private: 
  /// the type of the model  
  ModelType m_modelType; 
  union { 
   CharModelInstance * m_pCharModel; 
  }; 
  ParaXEntity * m_pModel; 
   
 public: 
 
  /** Get the character model instance. If the model instance is not of character type,  
  * then NULL will be returned. But it does not mean that there is not a valid model instance of other 
types */ 
  CharModelInstance * GetCharModel(); 
  /** get the animation model*/ 
  ParaXEntity* GetAnimModel(); 
  /** init the animation instance. associate it with the ParaX model*/ 
  void Init(ParaXEntity * pModel); 
 
  /** refresh the model appearance with current settings. Call this function whenever the model has 
changed its appearance. */ 
  void RefreshModel(); 
 
  /** Render the model with its current settings. */ 
  virtual HRESULT Draw( SceneState * sceneState, const D3DXMATRIX* mxWorld); 
 
  /** shadow volume */ 
  virtual void BuildShadowVolume(ShadowVolume * pShadowVolume, LightParams* pLight, 
D3DXMATRIX* mxWorld); 
 
  /** Advance the animation by a time delta in second */ 
  virtual void AdvanceTime( double dTimeDelta ); 
  /** Get the specified attachment matrix of the current model. 
  * this is usually for getting the mount point on a certain model, such as horses. 
  * @return: NULL if not successful, otherwise it is pOut. 
  */ 
  D3DXMATRIX* GetAttachmentMatrix(D3DXMATRIX* pOut, int nAttachmentID); 
  
  virtual void LoadAnimation(const char * sName, float * fSpeed,bool bAppend = false); 
  virtual void LoadAnimation(int nAnimID, float * fSpeed,bool bAppend = false); 
   
// … some functions are ignored. 
 }; 
 

12.3.4 Character State Manager 
The character state manager is a variant finite state machine simulating the low level 
behaviors of a character. Following is some state functions used in our CBipedStateManager 
class.  
class CBipedStateManager 
{ 
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 public: 
private: 
  /// the state memory 
  list <BipedState> m_memory; 
  /// the biped object that is associated with this state manager. 
  CBipedObject* m_pBiped; 
  /// state timer, it is used for state transition timing.  
  /// for example, one can define the time from state1 to state2. 
  float m_fTimer; 
  /** last animation state, which is the animation played in the last frame. 
  * this is used for AI or other modules to check for the current biped animations.*/ 
  BipedState m_nLastAnimState; 
  /** true if character uses walk as the default moving animation.otherwise it uses running. 
  * default value is running.*/ 
  bool m_bWalkOrRun:1; 
  /** whether the biped's state is being recorded to the movie controllers. Default value is false. */ 
  bool m_bRecording:1; 
  /** whether the biped is mounted on another object. */ 
  bool m_bIsMounted:1; 
 
  /* User data */ 
  D3DXVECTOR3 m_vPos; // for position user data 
  float  m_fAngleDelta; // for angle user data 
 protected: 
  /** remove all occurrence of a given state */ 
  void RemoveState(BipedState s); 
  /** make sure that the memory has space left for one more state*/ 
  void CheckMemory(); 
 
  /** replace the current state with the one in the input*/ 
  void ReplaceState(BipedState s); 
  /** add a new state to state memory */ 
  void PushState(BipedState s); 
  /** all occurrence of the same state will be removed from the memory before this state is pushed to 
the memory*/ 
  void PushUniqueState(BipedState s); 
  /** prepend a new state to state memory*/ 
  void PrependState(BipedState s); 
  /** all occurrence of the same state will be removed from the memory before this state is 
prepended to the memory*/ 
  void PrependUniqueState(BipedState s); 
  /** ensure that state s is unique in the memory. If there is one than one such state, it will be 
deleted.*/ 
  void SetUniqueState(BipedState s); 
 public: 
  /** whether the object is mounted on another object. */ 
  bool IsMounted(); 
  /** set mount state */ 
  void SetMounted(bool bIsMounted); 
  /** return true if character uses walk as the default moving animation.otherwise it uses running.*/ 
  bool WalkingOrRunning(); 
  /** Set default moving style 
  *@param bWalk: true if character uses walk as the default moving animation.otherwise it uses 
running.*/ 
  void SetWalkOrRun(bool bWalk); 
 
  /** last animation state, which is the animation played in the last frame. 
  * this is used for AI or other modules to check for the current biped animations.*/ 
  BipedState GetLastAnimState(); 
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  /** Find a specified state in memory.  
  * @param s: the state to be found. 
  * @return: If the state is not found, a negative value(-1) will be returned; otherwise the current 
index of the first occurrence of the state is returned.*/ 
  int FindStateInMemory(BipedState s); 
   
  /** get the last biped state */ 
  BipedState GetLastState(); 
  /** get the last biped state */ 
  BipedState GetFirstState(); 
   
  static bool IsStandingState(BipedState s); 
  static bool IsMovingState(BipedState s); 
  /** whether the memory contains at least one moving state.*/ 
  bool HasMovingState(); 
  /// whether the biped is swimming 
  bool IsSwimming(); 
  /// whether the biped  is flying 
  bool IsFlying(); 
 
  CBipedObject* GetBiped(); 
  void SetBiped(CBipedObject* pBiped); 
 
  /** read an action symbol, and let the manager determine which states it should go to. 
  * this function will not perform any concrete actions on the biped objects. Call  
  * Update() method to perform these actions on the associated biped after adding series of  
  * action inputs to the state manager. The recommended order of calling is 
  *  StateManager::Update()->Environment Simulator->IO:{StateManager::AddAction} 
  * @param nAct: the action 
  * @param data: the data specifying more details about the action. This value default to NULL 
  * if nAct is S_ACTIONKEY, then pData is const ActionKey*  
  * if nAct is S_WALK_POINT, then pData is NULL or 1, specifying whether to use angle. 
  * @return: the current state is returned. */ 
  BipedState AddAction(ActionSymbols nAct, const void* pData=NULL); 
 
  /** update the associated biped according to the memory or state of the manager. 
  * this function is automatically by each active biped during each frame move. 
  * it may sometimes change the memory of state manager. But in most cases, it just carries out  
  * actions according to the current state.  
  * @param fTimeDelta: the time elapsed since the last time this function is called. Units in 
seconds.*/ 
  void Update(float fTimeDelta); 
//.. several miscellaneous functions are ignored  
} 
 

12.4 Summary and Outlook 
The character animation system discussed in this chapter can be extended to synthesis more 

intelligent and realistic character motions. Character animation is an active research field and 
its development never slows down in the past decades.  

When looking forward in this domain, we are always relating it to us human beings. I.e. 
how we learn to control the motion of our body by learning, observing, and practicing in the 
physical environment and how we are able to generate motions to achieve our mental goals 
with little mental and physical (energy) cost. There is still a long way to go to make virtual 
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characters in the virtual world act like ourselves. But whatever advancement people make, 
you are likely to have the first experience of it in a computer game.  

In the next chapter, we will see how to generate animation data from 3d content creation 
tools.  
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Chapter 13 Writing Model Exporters 

A game engine, though it could be, is not an all-in-one game development platform. It still 
depends on a number of external third party tools to create the content used in a game title. 
Famous 3D content creation tools are 3dsmax, Maya, etc. One of the most important external 
tools that virtually every game engine needs to provide is the model exporter. It exports 3D 
models, textures, materials, and animation data from these widely used professional tools to 
model files known to the game engine. In this chapter, we will take 3dsmax as an example 
and show the steps of writing a model exporter. Optionally, a game engine may also develop 
tools to export a complete 3D scene, including terrain, referenced 3D models, lights, paths or 
even game specific logics from external content creation tools to the game engine.  

13.1 Foundation 
Professional 3D content creation tools like 3dsmax and Maya have exposed API through 

both the C++ programming interface and their built-in scripting system. These SDK API 
enables developers to write plug-in programs to extend their functionalities. Models and 
animations used by a game engine are first constructed in these tool environments and then 
exported through plug-in programs to game files known to the game engine.  

The relationship between a game engine and 3D content creation tools usually defines the 
major game production line. And it may vary from game to game even for the same game 
engine. Before a game is made, game designers and engine designer (or tool developers) must 
jointly decide which portion of the game content should be built in third-party tools, and 
which are to be developed and tested using in-game tools. But whatever their relationship, its 
design goal is to make the game production line more efficient for a specific game and for a 
specific team.  

Model exporter is the most common plug-in program which is almost always developed no 
matter what the game is. In this chapter, we will take 3dsmax as an example and show the 
steps of writing a model exporter. The concept used in writing 3dsmax based exporter can be 
mapped to other 3D tool platforms as well. Developing model exporter program is also a good 
starting point for learning the SDK API in 3dsmax.  

13.1.1 Terminologies  
Before we start, let us get familiar with a few important terminologies in this domain. They 

can be easily confused when writing the model exporter. We assume that you know how to 
use a 3d modeling tool, such as 3dsmax, to create skinned or biped animation, and that you 
know what a skin modifier is.  

13.1.1.1 Row major and Column major Matrix 
If this is the first time you ever worked with other 3D software SDK besides your own, you 

may run in to trouble of managing multiple definitions of matrix and coordinate systems. If 
you are working with DirectX, you are primarily working with row major matrix and in left-
handed coordinate system. OpenGL and 3dsmax by default uses column major matrix. When 
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writing model exporters, we had better adhere to a single coordinate system and math 
operators. In this book, we use row major matrix and math. Hence if v is a 4D vector, and m 
is a 4*4 matrix, we will assume that they are all row major and we use the following math to 
transform the vector. This math convention is also adopted by DirectX. 

 'v v m= ×  

If you are using 3dsmax’s Data eXchange Interface (3DXI) or originally called IGame 
interface API before version 7, you can count on 3dsmax to automatically convert the 
coordinate system for you. You can tell the 3dsmax to use DirectX compatible coordinate 
system, and then everything you get from the 3dsmax API will be row major, left-handed 
with the y component pointing upwards. Right now, some helper mathematical functions in 
3dsmax still use its internal coordinate format; hence one still need to pay attention and 
convert these things manually in a few places. 

13.1.1.2 Initial Pose 
Initial Pose refers to the static mesh pose when the skin modifier is applied. It is more 

precise to say that it is a snapshot of the static mesh just before the skin modifier is applied. 
This is different from the animated mesh pose at Frame 0, because the mesh at Frame 0 is 
already transformed by the skin or biped modifier in 3dsmax. Now suppose we have three 
sequences of character animations stored in three separate files: one for standing, one for 
walking, and the other is for running. For a game engine using skeletal (or skinned) animation, 
it is required that all characters in these three files share the same skeleton and initial pose.  

There are various ways to make skeletal animation in 3dsmax, extracting this initial pose 
using the standard API can be difficult. Fortunately, 3dsmax exposes a very handy function 
called GetInitialPose() through 3DXI. The mesh returned from this function can be used as 
the shared mesh for all skinned animation sequences.  

13.1.1.3 Bone’s World Transform Matrix  
The effect of a bone is mathematically equivalent to a special 4*4 matrix M. In 3dsmax, 

this matrix is called the bone’s world transformation matrix. To graphically represent and 
manipulate a bone, 3dsmax uses a bone-like mesh whose origin is at (0,0,0). It then 
transforms the bone mesh using the bone’s world transform matrix M. Now the transformed 
mesh becomes the graphical presentation of the bone matrix M. For example, an identity 
matrix draws a bone at the world origin, whereas a translation matrix draws the bone mesh 
offset by the mount in the matrix’s last row. See Figure 13.1. To modify bones, artists 
manipulate the bone mesh in 3D space, such as translating, rotating and scaling it, the result 
will be propagated to the bone matrix.  
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Bone Matrix=Identity Matrix 

 
Bone Matrix=Rotation* Translation 

Figure 13.1 Bone Matrix and its graphical presentation in 3dsmax 

13.1.1.4 Initial Bone Matrix  
Initial bone matrix is a special constant world transformation matrix which brings the bone 
mesh from its local space (or you can think of it at world origin) to its initial pose in the world 
space, where it is bound with the initial pose of the mesh. The presentation of bones when all 
of them are transformed by their initial bone transform matrix is called the initial bone pose. It 
is at the initial bone pose that the character mesh is bound. The snapshot of the mesh when 
bounded to initial bone pose is called the initial pose of the mesh, as explained in the previous 
section. See Figure 13.2. 

 

Figure 13.2 Initial bone pose and initial mesh pose 

Like initial pose, the initial bone transform matrices of all bones in all animation sequences 
of a character must be the same. In essence, this ensures that all sequences of a character 
share the same skeleton. In 3dsmax’s 3DXI interface, we can get the initial bone 
transformation matrix at any time by calling GetInitBoneTM() function.  

13.1.1.5 Bone’s World Transform Matrix at Frame N 
In 3dsmax, we can sample the animation data by querying the bone’s world transformation 
matrix at a specific frame within the animation range. Like the initial bone matrix, the world 
transform matrix at frame N brings a bone from its local space to its bone pose at Frame N. 
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For example, Figure 13.3 shows the bone pose at frame 0, which is the first frame of the 
running sequence.    

 

Figure 13.3 Bone pose at frame N  

13.1.1.6 Affine Matrix Decomposition 
There are basically three kinds of bone manipulations in 3dsmax. They are scaling (S), 
rotation (R) and translation (T). We call them SRT transformation in short. An artist may 
apply these operations to a bone any number of times and in any order. Although 3dsmax 
internally keeps the history of these operations in terms of SRT keys, it is difficult to get them 
through its API due to the number of ways that a bone may be animated in 3dsmax. However, 
we can get the bone’s world transformation matrix at any frame (time) regardless of the type 
of keys through the 3DXI API. We will show that, by decomposing a bone’s transformation 
matrix in to SRT keys, we will be able to export interpolable animations to the game engine.  

 

Matrix Interpolation 

The reason for a game engine to use SRT keys instead of the bone’s transformation matrix 
itself is for smooth interpolation between two adjacent key frames. In previous chapter, we 
have seen that animations in a game engine are generated by interpolating the SRT keys 
separately. You might ask: will it be just good to linearly interpolate the bone’s world 
transformation matrix? Well, the answer lies in how you define a good interpolation. 
Interestingly, this is a psychological problem concerning how the human mind interpret and 
predict motions that it observes. Experiments show that the human mind tends to interpret 
contents on image sequences as solid bodies, which are rotated and/or translated using the 
shortest path from one image to the next. If the size of symbols on two consecutive images 
changes, the mind would most likely to interpret it as a scale. In other words, the human mind 
interprets a sequence of images and predicts the non-existent ones in-between by rules of SRT 
as well. On the other hand, we will get unnatural motion if we linearly interpolate M(t) and 
M(t+1), using the 16 components of the 4x4 matrix M. However, if we decompose the matrix 
in to SRT terms, interpolate them individually, and then reassemble them back to a single 
matrix, we will obtain more naturally interpolated motion during the time (t, t+1). This is why 
decomposing a matrix into SRT components is very important in computer graphics. The 
process is explained below. 
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Affine Matrix 

Three types of matrix are commonly used for 3-D graphics: 3×3 linear, 3×4 affine, and 4×4 
homogeneous; similar types with one less column and row are used for 2-D graphics. The 
homogeneous matrix is most general, as it is able to represent all the transformations required 
to place and view an object: translation, rotation, scale, shear, and perspective. Shear and 
perspective transformations are not used when animating bones. All transformations except 
perspective can be accommodated by an affine matrix, which, in turn, can be considered just a 
3×3 linear matrix with a translation column appended. Hence matrix used in 3D animation is 
3×4 affine matrix with 12 degrees of freedom.  

 

Affine Matrix Decomposition 

Decomposing affine matrix is a computationally extensive iterative process. One can find 
the details in the paper “Matrix Animation and Polar Decomposition” written by Ken 
Shoemake, and also in an article in Graphics Gem IV. Fortunately, 3dsmax SDK contains 
such a function called decomp_affine(), which takes a 3dsmax affine matrix and returns its 
SRT parts. When we say 3dsmax affine matrix, we really mean it. You can not provide your 
own affine matrix; you have to use the 3dsmax’s presentation of matrix in order to get the 
correct result. We hope that 3dsmax will release a more public version of this function in its 
next release. The input and output of this function are related by the following equation. 
Please pay attention to the order; it is S, R, and then T.  

 mSRT = Ms Mr Mt× ×  

mSRT is the input affine matrix, Ms, Mr, Mt are scale, rotation and translation output  
matrices.  

There is something tricky about the scale transformation Ms, which can be a uniform scale 
transformation, or non-uniform scale transformation about an arbitrary axis. In the first case,  

 Ms=(s,s,s,1) E, where E is identity matrix, s is a number(scaler).×  

In the second case, things get complicated. 

 -1Ms = Mu [(Sx,Sy,Sz,1) E] (Mu )× × ×  

In the equation, Mu is the scale's rotational axis transform. Here is what it does on the right 
side of the above equation: it first rotates the space, so that scale axis is aligned with x,y,z axis, 
then it applies a scale transform (Sx,Sy,Sz) along the three axis, finally it rotates back to the 
original space by applying the inverse of Mu. For simplicity, most game engine only support 
uniform scale as well as scale transforms along the x,y,z axis. In other words, most game 
engines only deal with the situation when Mu is an identity matrix, such that Ms can be 
rewritten as below. 

 Ms = (Sx,Sy,Sz,1) E ×  

Internally, we use a 3D vector S =(Sx,Sy,Sz) to represent Ms, a quaternion R=(i,j,k,w) for Mr, 
and a 3D vector T =(x,y,z) for Mt. Hence we only exported 10 degrees of freedom from the 
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bone matrix. Yet, the original M has 12 degrees of freedom. The missing two degrees of 
freedom is Mu, which we ignored and assumed them to be identity during export.  

13.1.2 Exporting Mesh 
So far, we have build up enough terminology to start explaining the exporting process. We 

will only talk about exporting animated mesh. For static mesh the process is simplified by 
exporting only the first frame. Terminologies which are already explained in previous section 
are in italic letters in the rest of the text.  

There are two major passes when exporting scene data.  

In the first pass, we traverse the 3ds max scene and locate the mesh object we would like to 
export, and then we export vertices at their initial pose, together with skin information, 
textures and materials, etc. For each vertex, we may need to collect the following information.  
struct ModelVertex { 
 D3DXVECTOR3 pos; // 3D position 
 byte weights[4];  // bone weight of up to four bones 
 byte bones[4];   // bone index of up to four bones 
 D3DXVECTOR3 normal; // vertex normals 
 D3DXVECTOR2 texcoords; // texture coordinates 
}; 

For all meshes in the max file, we need to extract a list of textures and materials used at 
least once by a mesh. Also we need to extract all bones used in the scene and assign them 
unique IDs; parent-child relationships are also extracted for the bones. The data extracted in 
the first pass is mostly static data which are identical for all animation sequences of the same 
model.  

In the second pass, we need to locate bone objects in the scene and extract animation data 
from each animation sequence file. This procedure is explained in detail in the next section. 

13.1.3 Exporting Animation Data 
Animation data is kept in bone objects. It includes snapshots of each bone’s world 

transformation matrix at all frames (times) and for all animation sequences. For each bone in 
each animation sequence file, we need to use the following procedure to extract animation 
data.  

Get the animation range of the current sequence [0, T] 

Sample the entire animation range at a given frequency, such as 30 frames per second.{ 

 For each sample, extract animation as SRT keys relative to the parent bone.  

} 

Remove redundant keys 

Of course, we can sample only when there is an explicit key in the animation range, but the 
above code is general enough to be applied to any animation data in 3dsmax. Next, we will 
show how to extract a bone’s SRT keys relative to its parent bone.  

Suppose we are sampling a bone at time t. First of all, we get the world transformation 
matrix of the bone at time t. We denote it as M(t). Let Mi denotes the initial bone matrix of 
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the bone being sampled. Mi is a constant for the bone at all times. Now suppose there is a 
vertex v which is a vertex on the mesh’s initial pose and which is fully bound to this bone. 
The transformed vertex position v(t) at time t for v can thus be written as below. 

 -1
iv(t) = v M M(t)× ×  

Now suppose the bone has a parent bone, whose world transformation and initial bone 
transformation matrix are Mp(t) and Mpi respectively. v(t) can now be rewritten as below. 

{ }-1 -1 -1 -1
i pi p pi pv(t) = v [M M(t)] [(M M ( )) ] [M M ( )]t t× × × × × ×  

We can continue to append the identity matrix { }-1 -1 -1
pi p pi p[(M M ( )) ] [M M ( )]t t× × ×  to 

the end of the above equation for all parent bones until the last one in the bone hierarchy (i.e. 
the root bone). Thus, v(t) can be rewritten as below: 

{ }
{ } { }

-1 -1 -1 -1
i pi p pi p

-1 -1 -1 -1 -1 -1
ppi pp ppi pp root_i root root_i root

v(t) = v [M M(t)] [(M M ( )) ] [M M ( )]

[(M M ( )) ] [M M ( )] ... [(M M ( )) ] [M M ( )]

t t

t t t t

× × × × × × ×

× × × × × ×

 

We regroup the terms on the right side and rewrite v(t) in the following final format. 

{ } { }
{ }

-1 -1 -1 -1 -1 -1
i pi p pi p ppi pp

-1 -1 -1 -1
ppi pp pppi ppp root_i root

v(t) = v [M M(t)] [(M M ( )) ] [M M ( )] [(M M ( )) ]

[M M ( )] [(M M ( )) ] ...[M M ( )]

t t t

t t t

× × × × × × × × ×

× × × ×
 

Observe that the first term in the curly brackets in the above equation is:  
-1 -1 -1

i pi p( ) [M M(t)] [(M M ( )) ]rM t t= × × ×   (1) 

rM(t) is actually a relative transformation matrix from the parent bone to the current bone. 
Hence rM(t) is the matrix we need to decompose and export. So for each bone at time t, we 
need to get the initial bone matrix of itself Mi and its parent Mpi, and we also get the world 
transformation matrix at time t of itself M(t) and its parent Mp(t). These four parameters can 
be directly obtained from the 3DXI API. Finally, we use equation (1) to get the relative 
parent-to-child bone transformation matrix.  

We can now directly decompose this affine matrix rM(t) using the 3dsmax function 
decompose_affine() to get the SRT keys which are used in the game engine. However, recall 
that in our character animation system, each bone has a constant pivot point. If we decompose 
rM(t) directly, we are assuming that the mesh’s origin (0,0,0) is the pivot point for all bones. 
Obviously this assumption is wrong. A bone’s pivot point should be the bone origin (0,0,0) 
after transformed to the initial bone pose. In other word, the pivot point Pivot for a given bone 
should be  

i

4 4

Pivot=(0,0,0,1) M
(Pivot)P M ×

×
=

 

Let P denotes the homogenous 4*4 translation matrix from Pivot. Taking the bone’s pivot 
point in to consideration, we can rewrite rMt as in equation (1) as below. 
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-1

-1 -1 -1 -1 -1
i pi p

rMt = P mSRT P
or mSRT = P rMt P P [M M(t)] [(M M ( )) ] Pt

× ×

× × = × × × × ×
 

mSRT is the final affine matrix to be decomposed in to scale, rotation and translation keys, 
which are used in the game engine, i.e. s r tmSRT = M M M× × .  

To summarize, for each animated bone we export a constant pivot point, and for each key 
frame of the bone, we export a scale key S =(Sx,Sy,Sz) from Ms, a quaternion key R=(i,j,k,w) 
from Mr, and a translation key T =(x,y,z) from Mt . There is are totally 10 degrees of freedom 
exported for each key frame of a bone.  

13.1.4 Importing Animation  
The majority of this chapter talks about model exporting. In this add-on section, we will 

talk about importing animation data from motion capture devices. Generally speaking, this 
should be a documented process which involves the following activities. 

- Planning: write down the specifications of each character, such as name, bone 
hierarchy, frame rate, and make a list of actions to be captured for each character, 
including whether it is looped, animation length, etc.  

- Shooting: we can shoot real person using motion capture devices, or virtual characters 
using the game engine. The second one enables the game engine’s built-in character 
editor to export motion chapture files to other editing environment such as Character 
Studio in 3dsmax. This can be very useful for sharing animations across different 
authoring platforms and different characters.  

- Processing: we convert motion chapture data to skeletal animation data. During this 
processing, one may need to correct unfit motions and make the animation ready to be 
used by the game engine. 

- Exporting animation to the game engine: we assign skeletonal animations to our 
character and export them to model files used by the game engine. 

13.1.4.1 Motion Capture File Format 
 Table 13.1 outlines several motion capture formats in use today along with URLs for 

additional formatting information. It should be pointed out that, so far, motion capture formats 
are not quite standardized. But the good news is that most of the widely used motion capture 
file formats are in straight forward text encoding and is designed to be human readable.  

Table 13.1 Motion Capture File Format 

File Ext Company Key Style File Format Reference 

BVH & BVA BioVision Rotation  BVH.rtf in 3dsmax CD 

CSM 3dsmax Position CSM.rtf in 3dsmax CD 

ASF & AMC Acclaim Rotation http://www.darwin3d.com/gamedev/acclaim.zip

There are two key styles which are joint rotations and marker postions. They denote how 
animation keys are stored in the file. Storing animation keys as point (marker) positions is 
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more close to the raw data obtained from motion capture devices, because motion capture 
devices record live motions by tracking a number of maker points (usually at the joint or pivot) 
over time, which are translated into a 3 dimensional digital representation. In order to capture 
more than one degree of freedom of the joint motions, there are usually more maker points 
than bones. The process of deriving joint rotations from marker position tracks is a 
complicated process. Hence we suggest the game engine work with file formats that store 
motions as joint rotations. This leaves the process of translating point positions to rotational 
data of bones, to motion device vendors and/or dedicated software tools like character studio 
in 3dsmax.  

13.1.4.2 BVH File Format 
We will look at the BVH format in more details. BVH is the only natively supported file 

format by character studio’s biped system in 3dsmax. Biped provides direct input of BVH 
files from disk, including comprehensive key-frame reduction and footstep extraction to 
provide a fast and accurate means of import for large volumes of rotational data stored in the 
BVH format. During import, XYZ Euler joint rotations stored in the BVH file are used to 
derive Quaternion bone rotation data for the biped at each frame. Once imported, BVH-based 
animations can be saved as native Biped .bip files, providing access to a comprehensive set of 
animation, layered editing, retargeting and structural modification features that are built 
directly into Biped.  

As we mentioned, motion capture formats are not quite standardized. In order for 3dsmax 
Biped system to understand it, all bones in the BVH format must stick to a fixed naming 
convention as well as bone hierarchy (i.e. parent-child relationships of named bones). The 
hierarchy is given below.  
Hips { 
 LeftHip (LeftUpLeg) { 
  LeftKnee (LeftLowLeg) { 
   LeftAnkle (LeftFoot) { 
    End Site {}  
} } } 
 
 RightHip (RightUpLeg) { 
  RightKnee (RightLowLeg) { 
   RightAnkle (RightFoot) { 
    End Site {}  
} } } 
 
 Chest { 
  LeftCollar { 
   LeftShoulder (LeftUpArm) { 
    LeftElbow (LeftLowArm) { 
     LeftWrist (LeftHand) { 
      End Site {} 
} } } } 
  RightCollar { 
   RightShoulder (RightUpArm) { 
    RightElbow (RightLowArm) { 
     RightWrist (RightHand) { 
      End Site {}  
} } } } 
  Neck { 
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   Head { 
    End Site {}  
} } } } 

Since 3dsmax 8, several more bone names, such as Toe, ChestN and FingerN, etc are also 
recoginized. For more information, please refer to the BVH documentation in 3dsmax CD.  

BVH allow us to specify both translation and rotational animation data; however, 3dsmax 
only uses the translation data in the hip bone, translations in other bones are ignored. So for 
the hip bone, we export vector3 translation key and a vector3 rotation key; for the rest of the 
bones we only export the rotation key.  

The BVH serialization code example is given in the code section.  

13.1.4.3 Why supporting Motion Capture Format 
Motion Capture File provides a simple mean for sharing animations in different animation 

processing systems. In ParaEngine, we allow any in-game skeletal animations to be exported 
as BVH file. By editing a marker file, we can extract only specific biped bones and export 
common BVH files which can be further processed by 3dsmax character studio or other 
systems that recognize them. The work flow is illustrated in Figure 13.4. 

 

Figure 13.4 Animation Work Flow 

 

13.2 Architecture 
In this section, the software architecture of a model exporter is given. The main exporting 
code is organized in three places, CXFileExporter, CMaxPipeline and CParaXBuilder. They 
are for exporter interface, scene data extraction in 3dsmax, and serialization of model data, 
respectively. They are explained one by one next. 

BVH files 

ParaX 

Live Motion Capture 

3dsmax  
Character studio 

In-game editing 

Game Engine 

Character Models 

Animated model files used in game 
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13.2.1 Exporter Interface  
CXFileExporter is an implementation of 3dsmax exporter interface. It is the entry point when 
the user specifies the exporting options and initiates the exporting progress based on user 
options.  

Figure 13.5 shows the common options supported by model exporter. For example, it 
allows a user to specify the output format, whether to export animations, and whether to 
compress texture files, etc. Moreover, it supports an intelligent export option, which allows 
users to export all 3dsmax model files in a given directory and subdirectories without any user 
intervention according to some predefined rules. This can be useful when we are dealing with 
a large game project where an automated resource build process is very important.  

For each 3dsmax model file, the CXFileExporter class will generate an option object to be 
passed down to the export pipeline. The pipeline will extract, optimize, convert, and then the 
serialize data according to the given option.  
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Figure 13.5 Model Export Options 

13.2.2 Scene Data Extraction 
CMaxPipeline is called to generate all the intermediary data through the 3dsmax's export API 
interface or 3DXI, which may include materials, meshes and frames (bones), etc. One can 
refer to a sample in DirectX 9 SDK for extracting basic mesh data in 3dsmax. Scene data 
extraction is a progress of recursively traversing various scene nodes in 3dsmax. During scene 
traversing, if a bone frame or a mesh object is found, one can use the procedure described in 
the Foundation section to extract animation data. Some code snippet is also given in the code 
section of this chapter.  

13.2.3 Serialization of Model Data 
In the last step of the exporting progress, we pass the intermediary data extracted from the 
3dsmax pipeline to CParaXBuilder, which is our model file serialization class. It performs a 
series of optimizations on the data, such as texture batch sort, redundant face and vertex 
removal, render pass sort, vertex cache optimizations, etc. Finally, it calls one of its saving 
functions to save the data in a specified encoding and file type, such as DirectX text file or 
ParaX binary or text file. Figure 13.6 shows the memory data presentation used at 
serialization time.  

Please also note that sometimes we need to extract information from multiple files (e.g. 
multiple animation sequences stored in separate files) and feed them to the same 
CParaXBuilder object for optimization and serialization.  
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Figure 13.6 Model Data Presentation 

13.3 Code and Performance Discussion 
Some code snippets are given. 

13.3.1 Sampling Bone Animation 
The following sample code shows the sampling bone animation procedure as described in 
section 13.1.3.  
void CMaxPipeline::SaveSampledTranformKeyAsSRTKey(ComPtr<IDXCCAnimationStream>& anim, 
IGameNode* node, TimeValue tick, int k) 
{ 
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 D3DXMATRIX tm; 
 D3DXMATRIX fm; 
 D3DXVECTOR3 pivot(0,0,0); 
 ConvertGMatrix(fm, node->GetWorldTM(tick)); 
 
 if(m_curIGameSkin !=NULL) 
 { 
  ////////////////////////////////////////////////////////////////////////// 
  // pre-multiply the inverse of the initial transform of the bone when skin is added. 
  D3DXMATRIX InitBoneMatrixInverse; 
  D3DXMatrixIdentity(&InitBoneMatrixInverse); 
 
  D3DXMATRIX mInit; 
  if(m_curIGameSkin->GetInitBoneTM(node, (GMatrix&)mInit)) 
  { 
   D3DXVec3TransformCoord(&pivot, &D3DXVECTOR3(0,0,0), &mInit); 
   if(k==0 && m_curFrameTracker!=0){ 
    m_curFrameTracker->m_pivot = pivot; 
   } 
   if(D3DXMatrixInverse(&InitBoneMatrixInverse, NULL, &mInit) != NULL) 
    fm = InitBoneMatrixInverse*fm; 
  } 
  else 
  { 
   // pelvis does not have an initial bone transform. 
  } 
 } 
 IGameNode* pn = node->GetNodeParent(); 
 if (pn) 
 { 
  D3DXMATRIX pfm; 
  ConvertGMatrix(pfm, pn->GetWorldTM(tick)); 
  if(m_curIGameSkin !=NULL) 
  { 
   ////////////////////////////////////////////////////////////////////////// 
   // pre-multiply the inverse of the initial transform of the bone when skin is added. 
   D3DXMATRIX InitBoneMatrixInverse; 
   D3DXMatrixIdentity(&InitBoneMatrixInverse); 
 
   D3DXMATRIX mInit; 
   if(m_curIGameSkin->GetInitBoneTM(pn, (GMatrix&)mInit)) 
   { 
    if(D3DXMatrixInverse(&InitBoneMatrixInverse, NULL, &mInit) != NULL) 
     pfm = InitBoneMatrixInverse*pfm; 
   } 
  } 
  D3DXMATRIX ipfm; 
  if(D3DXMatrixInverse(&ipfm, NULL, &pfm) != NULL) 
   tm = fm * ipfm; 
 } 
 else 
 { 
  tm = fm; 
 } 
 
 DXCCKEY_MATRIX key; 
 key.Time = (float)k;  
 key.Value = tm; 
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 // polar decomposition into SRT using decomp_affine() 
 AffineParts parts; 
 D3DXMATRIX mSRT; 
 
 if(pivot == D3DXVECTOR3(0,0,0)) 
 { 
  mSRT = tm; 
 } 
 else 
 { 
  D3DXMATRIX mP; 
  D3DXMatrixIdentity(&mP); 
  mP._41 = pivot.x;mP._42 = pivot.y;mP._43 = pivot.z; 
  mSRT = mP * tm; 
  mSRT._41 -= pivot.x;mSRT._42 -= pivot.y;mSRT._43 -= pivot.z; 
 } 
  
 GMatrix tmMax; 
 ConvertD3dMatrix(tmMax, mSRT); 
 decomp_affine(tmMax.ExtractMatrix3(),&parts); 
 // DecomposeMatrix(tm.ExtractMatrix3(), parts.t, parts.q, parts.k); 
 
 D3DXKEY_VECTOR3 positionKey; 
 positionKey.Time = (float)k; 
 positionKey.Value = (D3DXVECTOR3)parts.t; 
 _V(anim->SetTranslationKey(k, &positionKey)); 
 
 D3DXKEY_QUATERNION rotationKey; 
 rotationKey.Time = (float)k; 
 rotationKey.Value = (D3DXQUATERNION)parts.q; 
 
 // 3dsmax returns quaternion using column matrix. However, row matrix is used by directx.  
 // One can switch to row matrix by flip the quaternion's w component. 
 // rotationKey.Value.w = -rotationKey.Value.w; 
 _V(anim->SetRotationKey(k, &rotationKey)); 
 
 // please note Scale's rotation axis (quaternion parts.U) is ignored. 
 D3DXKEY_VECTOR3 scaleKey; 
 scaleKey.Time = (float)k; 
 scaleKey.Value = (D3DXVECTOR3)parts.k; 
 _V(anim->SetScaleKey(k, &scaleKey)); 
} 

13.3.2 BVH Serialization Code 
The following code shows writing BVH animations to files.  
bool CBVHSerializer::WriteBVHNode(int nLevel, int nBoneIndex, CParaFile* pFile,bool 
bEscapeUnknownBones) 
{ 
 int nChildCount = m_bones[nBoneIndex].GetChildCount(); 
 if(bEscapeUnknownBones && m_bones[nBoneIndex].m_sMarkerName == "End") 
  nChildCount = 0; 
 bool bIsUnknownBone = m_bones[nBoneIndex].IsUnKnownBone() && (nChildCount != 0); 
  
 if(!bEscapeUnknownBones || !bIsUnknownBone) 
 { 
  // write root or joint name 
  for (int i=0;i<nLevel;++i) 
   pFile->WriteFormated("\t"); 
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  if(nChildCount == 0) 
  { 
   // end site 
   pFile->WriteFormated("End Site\r\n"); 
  } 
  else if(nLevel == 0) 
  { 
   // root  
   if(!m_bones[nBoneIndex].m_sMarkerName.empty()) 
    pFile->WriteFormated("HIERARCHY\r\nROOT %s\r\n", 
m_bones[nBoneIndex].m_sMarkerName.c_str()); 
   else 
   { 
    char sID[MAX_PATH]; 
    sprintf(sID, "%d", nBoneIndex); 
    pFile->WriteFormated("HIERARCHY\r\nROOT %s\r\n", sID); 
   } 
  } 
  else 
  { 
   // joint 
   if(!m_bones[nBoneIndex].m_sMarkerName.empty()) 
    pFile->WriteFormated("JOINT %s\r\n", m_bones[nBoneIndex].m_sMarkerName.c_str()); 
   else 
   { 
    char sID[MAX_PATH]; 
    sprintf(sID, "%d", nBoneIndex); 
    pFile->WriteFormated("JOINT %s\r\n", sID); 
   } 
  } 
  // left curly brace 
  for (int i=0;i<nLevel;++i) 
   pFile->WriteFormated("\t"); 
  pFile->WriteFormated("{\r\n"); 
 
 
  // write offset relative to parent 
  for (int i=0;i<nLevel+1;++i) 
   pFile->WriteFormated("\t"); 
 
  D3DXVECTOR3 vOffset = m_bones[nBoneIndex].m_vOffsetToParent; 
  if(bEscapeUnknownBones) 
  { 
   int nIndex = GetMarkedParentIndex(nBoneIndex); 
   if(nIndex >=0 ) 
    vOffset = m_bones[nBoneIndex].m_vAbsOffset - m_bones[nIndex].m_vAbsOffset; 
  } 
  pFile->WriteFormated("OFFSET \t\t%f %f %f\r\n", vOffset.z, vOffset.y, vOffset.x); 
 
  // write channels  
  if(nChildCount != 0) 
  { 
   for (int i=0;i<nLevel+1;++i) 
    pFile->WriteFormated("\t"); 
   if(nLevel==0 || m_bExportBVHPosition) 
    pFile->WriteFormated("CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation 
Yrotation\r\n"); 
   else 



 

 222 

    pFile->WriteFormated("CHANNELS 3 Zrotation Xrotation Yrotation\r\n"); 
  } 
 } 
 
  
 for (int i=0;i<nChildCount;++i) 
 { 
  // this will prevent multiple end site be exported. 
  int nCount = m_bones[m_bones[nBoneIndex].m_childBones[i]].GetChildCount(); 
  if(nCount > 0 || i == 0) 
  { 
   if( !bEscapeUnknownBones ||  
    (m_bones[m_bones[nBoneIndex].m_childBones[i]].m_bCriticalBone)) 
    WriteBVHNode(nLevel+1, m_bones[nBoneIndex].m_childBones[i], 
pFile,bEscapeUnknownBones); 
  } 
 } 
 
 if(!bEscapeUnknownBones || !bIsUnknownBone) 
 { 
  // right curly brace 
  for (int i=0;i<nLevel;++i) 
   pFile->WriteFormated("\t"); 
  pFile->WriteFormated("}\r\n"); 
 } 
  
 return true; 
} 
 
bool CBVHSerializer::WriteBVHNodeAnimation(int nLevel, int nBoneIndex, CParaFile* pFile,bool 
bEscapeUnknownBones) 
{ 
 int nChildCount = m_bones[nBoneIndex].GetChildCount(); 
 if(bEscapeUnknownBones && m_bones[nBoneIndex].m_sMarkerName == "End") 
  nChildCount = 0; 
 bool bIsUnknownBone = m_bones[nBoneIndex].IsUnKnownBone(); 
 
 // write animation on each channel.  
 if(nChildCount != 0) 
 { 
  if(!bEscapeUnknownBones || !bIsUnknownBone) 
  { 
   D3DXVECTOR3 vPos1, vPos2, vPos(0,0,0); 
   D3DXVECTOR3 vRot(0,0,0); 
 
  // if the parent bone is its immediate upper level bone, then we only need to read data from the key
   if (m_pXMesh->bones[nBoneIndex].rot.used) { 
    Quaternion q = m_pXMesh->bones[nBoneIndex].rot.getValue(m_pXMesh->nCurrentAnim, 
m_pXMesh->currentFrame, 0,0,0.f); 
    q.ToRadians(&vRot.x, &vRot.y, &vRot.z); 
    vRot.x *= 180.f/D3DX_PI; 
    vRot.y *= 180.f/D3DX_PI; 
    vRot.z *= 180.f/D3DX_PI; 
   } 
   if(nLevel==0) 
   { 
    // since we have different default orientations, rotate the root bone to face positive X. 
    if(m_bRotateY) 
     vRot.y += 90.f; 



 

 223 

   } 
   if(nLevel == 0 || m_bExportBVHPosition) 
   { 
    D3DXVECTOR3 vAbsPos = (m_pXMesh->bones[nBoneIndex].mat*m_pXMesh-
>bones[nBoneIndex].pivot); 
    vPos = vAbsPos - m_bones[nBoneIndex].m_vAbsOffset; 
    // if this is the root node. 
    pFile->WriteFormated("%f %f %f ", vPos.x, vPos.y, -vPos.z); // the order is affected by 
m_RotateY settings. 
   } 
   pFile->WriteFormated("%f %f %f ", vRot.z, vRot.x, vRot.y); 
  } 
 } 
 
 // write child nodes. 
 for (int i=0;i<nChildCount;++i) { 
  // this will prevent multiple end site be exported. 
  int nCount = m_bones[m_bones[nBoneIndex].m_childBones[i]].GetChildCount(); 
  if(nCount > 0 || i == 0) 
  { 
   if(!bEscapeUnknownBones || 
m_bones[m_bones[nBoneIndex].m_childBones[i]].m_bCriticalBone) 
    WriteBVHNodeAnimation(nLevel+1, m_bones[nBoneIndex].m_childBones[i], 
pFile,bEscapeUnknownBones); 
  } 
 } 
 
 if(!bEscapeUnknownBones || !bIsUnknownBone) { 
  // end this frame 
  if(nLevel==0) 
  { 
   pFile->WriteFormated("\r\n"); 
  } 
 } 
 return true; 
} 

13.3.3 Performance Discussion 
Performance is not quite an issue in an exporter program, since it is not run at production 

time. We can carry out the most expensive optimization in the exporter program, while 
leaving only light-weighted optimizations to the game engine at run time.  

However, for performance reasons, we do not advise to write exporter for animated models 
through the scripting interface of 3dsmax. Not only will it run slowly for sophisticated meshes, 
but also one will lose the chance to use several free third party mesh optimization utilities, 
such as NVStrip from NVIDIA and DirectX’s extension library, which are all in C++. For 
simple static mesh, programming through the scripting interface is a choice, but optional. In 
ParaEngine, we have a script based exporter in 3dsmax for static meshes only; and it is very 
handy to use and modify. Scripting is very important for rapid development of general game 
exporter tools. We will see it in the next section.  

13.4 Summary and Outlook 
Model exporter is only a member in all plug-in tools developed for 3dsmax or other content 

creation tools during game development. Many game studios choose to code various other 
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toolsets for their content creation tools, so that designers and artists can easily preview and 
edit in the same familiar environment. These toolsets are usually developed in an RAD 
fashion. And most of them are developed via the scripting system, instead of C++ API. Below 
are several advantages of using the scripting system for tool development: 

- They have simpler interface and easy to write (no memory management, etc). 

- They are more portable. One does not need to rewrite or recompile for different 
versions of the content tools.  

- They are also quite reusable. Modules of script file can be more easily reused than 
objects in C++.  

- They are easy to debug and modify. 

Hence scripting interface becomes a good choice when you are writing plug-ins with rich 
GUI and without extensive computations, such as scene exporter, terrain exporter, particle 
system exporter, path and trigger exporter, etc. It is also a good idea to mix script based 
programming with C++ programming when working on your plug-in tools. Figure 13.7 shows 
a script based plug-in tool developed for 3dsmax in ParaEngine.  

 

Figure 13.7 Script based ParaEngine plug-in for 3dsmax 
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Chapter 14 AI in Game World 

Artificial Intelligence (AI) is one of the most important aspects during game development, 
because it is what makes a game playful. Although the topic of AI is more specific to games 
than to game engines, there are some paradigms which are common to many games and 
which need to be supported by the game engine natively.  

The definition of AI has always been versatile. The scope of AI in this chapter is limited to 
techniques which makes character behaviors in a game world customizable both before and 
after a game engine is released. In other words, this chapter talks about AI frameworks from a 
game engine’s perspective. It aims to enable game designers and players to design and make 
intelligent behaviors of game characters.  

In the Simulation chapter 8, we have already seen how game physics can affect a 
character’s motion, such as motions that adapt to obstacles and the slope of terrain and walls, 
and rag-doll animations, etc. In the previous Character Animation chapter 12, we have seen 
how some variant finite state machine can be used to control a character’s low level behaviors, 
i.e. motion blending of animation sequences. We will not cover them again in this chapter. 
Instead, we will illustrate an AI diagram that summarizes all aspects of game AI discussed in 
the book. 

In this chapter, we will look at some common design and implementation of game AI, 
which makes AI in the game world customizable. These include character simulation and 
sensor event system, and a number of useful high level AI controllers.  

14.1 Foundation 
To make this chapter goal-driven, we will begin by first defining several types of character 

AI behaviors which is common in computer games; and then we will propose techniques and 
software paradigms to achieve these goals with the minimum computation.  

14.1.1 Reactive Character 
Reactive character is only active in the game world when some one else, usually another 

player, triggers it, such as mouse-clicking on its figure. In other domain of computer science, 
we usually call such a thing reactive agent. If we look around in other software systems, we 
will see that many of them are built in the reactive agent paradigm, such as web services, 
remote procedure calls, etc.  

There are two things to consider when implementing a reactive agent based game character. 
One is agent discovery, i.e. how to locate a game character in a vast game world. Another is 
communication protocols, i.e. how one can send an eligible message to a game character, so 
that it can reply accordingly.  

Reactive NPC is the most commonly used and the least computational expensive character 
in computer games. We can construct many interesting game scenarios using it, such as a 
merchant character standing behind the bar that sells goods to visitors, or a guard that stands 
at the gate of a village giving advices or quests to passers-by, etc.  
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14.1.2 Movie Character 
Movie characters are game characters that behave according to some predefined sequence. 

Some cinematic characters that tell players a story between game scenes are of such a 
category. We can also introduce some randomness and looping mechanism in the sequence; 
and with this technique, we can make citizens in a game city quite convincing without 
simulating them using more computational expensive techniques.  

Movie characters can be endowed with reactive character abilities to form more interactive 
and intelligent hybrid character types. For example, when you click on a patrolling character 
in a typical RPG game, it will stop and reply to you, and then continue with its patrolling 
sequence.  

14.1.3 Perceptive Character 
Perceptive character is a game character that can perceive other game entities when they are 

in its perceptive radius. By perceiving the environment, a perceptive character usually acts 
autonomously. Re-spawning creatures in games are usually of this type. For example, when a 
creature sees a player, it may choose to attack, defense, or flee, etc. Perceptive characters are 
usually associated with internal rules and can actively issue actions according to their 
perceptions.  

One inevitable computation complexity of all perceptive characters is to effectively find all 
other characters in its perceptive radius. To reduce computation, we usually assign characters 
to different groups and define which groups can be perceived by a given character. Using 
group policy, we can easily reduce large number of irrelevant characters which are in a 
character’s vicinity, yet of no interest to it. We will see them in details in the next section.  

14.1.4 Character Simulation and Sensor Events 
In previous sections, we have identified several types of game characters. A game engine 

must be able to simulate characters according to their AI requirements. In ParaEngine, we use 
a unified character simulation and senor event framework which could achieve any 
combination of the aforementioned game character types. To begin with, we will define a 
general game character as a group of attributes, functions and sensor events. For ease of 
programmer readers, we will describe it in a class called IGameObject, from which other 
specific types of characters may be derived. See below. The sensor events are in bold text. 
They will be automatically called during game world simulation. One can refer to Chapter 
8.2.2 for the character simulation code.  
class IGameObject 
{ 
 public: 
  /** call back type */ 
  enum CallBackType{ 
   Type_EnterSentientArea=0, 
   Type_LeaveSentientArea, 
   Type_Click, 
   Type_Event, 
   Type_Perception, 
   Type_FrameMove, 
   Type_OnLoadScript 
  }; 
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  /** save the current character to database according to the persistent property. 
  if the object is persistent, the action is to update or insert the character to db 
  if the object is non-persistent, the action is to delete it from the database. */ 
  virtual bool SaveToDB(); 
 
  /** automatically generate way points according to its perceptions */ 
  virtual void PathFinding(double dTimeDelta); 
 
  /** animate biped according to its current way point lists and speed. 
  * assuming that no obstacles are in the way it moves.*/ 
  virtual void AnimateBiped( double dTimeDelta, bool bSharpTurning = false /*reserved*/);   
 
 
  /** Get the AI module that is dynamically associated with this object */ 
  virtual CAIBase*   GetAIModule(); 
 
  ////////////////////////////////////////////////////////////////////////// 
  // the following must be implemented. The IGameObject will automatically activate 
  // the script. Hence, object which implements these functions need to call the base class 
  // to ensure that the script is also activated.  
  ////////////////////////////////////////////////////////////////////////// 
 
  /** called when this object is attached to the scene. */ 
  virtual int On_Attached(); 
  /** called when this object is detached from the scene */ 
  virtual int On_Detached(); 
 
  /** when other game objects of a different type entered the sentient area of this object.  
  This function will be automatically called by the environment simulator. */ 
  virtual int On_EnterSentientArea(); 
  /** when no other game objects of different type is in the sentient area of this object.  
  This function will be automatically called by the environment simulator. */ 
  virtual int On_LeaveSentientArea(); 
 
  /** when the player clicked on this object. 
  This function will be automatically called by the environment simulator. */ 
  virtual int On_Click(DWORD nMouseKey, DWORD dwParam1,  DWORD dwParam2); 
 
  /** TODO: Some game defined events, such as user attack, etc. */ 
  virtual int On_Event(DWORD nEventType, DWORD dwParam1,  DWORD dwParam2); 
 
  /** when other game objects of a different type entered the perceptive area of this object.  
  This function will be automatically called by the environment simulator. */ 
  virtual int On_Perception(); 
  /** called every frame move when this character is sentient. 
  * This is most likely used by active AI controllers, such as  movie controller. */ 
  virtual int On_FrameMove(); 
   
  /** add a new call back handler. it will override the previous one if any. 
  bool AddScriptCallback(CallBackType func_type, const string& script_func); 
  /** return NULL if there is no associated script. */ 
  ScriptCallback* GetScriptCallback(CallBackType func_type); 
  /** remove a call back handler*/ 
  bool RemoveScriptCallback(CallBackType func_type); 
 
  /** whether the biped is sentient or not*/ 
  bool IsSentient(); 
  /** set the object to sentient.  
  * @param bSentient: true to make sentient. if the object's sentient count is larger than 0, this  
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  * function has no effect; false, to remove the object from the sentient list. 
  */ 
  void MakeSentient(bool bSentient=true); 
 
  /** get the sentient radius. usually this is much larger than the perceptive radius.*/ 
  float GetSentientRadius(); 
  /** set the sentient radius. usually this is much larger than the perceptive radius.*/ 
  void SetSentientRadius(float fR); 
 
  /** get the perceptive radius. */ 
  float GetPerceptiveRadius(); 
  /** Set the perceptive radius. */ 
  void SetPerceptiveRadius(float fNewRaduis); 
 
  /** return the total number of perceived objects. */ 
  int GetNumOfPerceivedObject(); 
 
  /** get the perceived object by index. This function may return NULL.*/ 
  IGameObject* GetPerceivedObject(int nIndex); 
 
  /** get the distance square between this object and another game object*/ 
  float GetDistanceSq2D(IGameObject* pObj); 
 
  /** whether the object is always sentient. The current player is always sentient */ 
  bool IsAlwaysSentient(); 
  /** set whether sentient. */ 
  void SetAlwaysSentient(bool bAlways); 
 
  /** update the tile container according to the current position of the game object.  
  * This function is automatically called when a global object is attached. */ 
  void UpdateTileContainer(); 
 
  /** is global object */ 
  virtual bool IsGlobal(){return m_bIsGlobal;} 
   
  /** make the biped global if it is not and vice versa.*/ 
  virtual void MakeGlobal(bool bGlobal); 
 
  /** set the group ID to which this object belongs to. In order to be detected by other game object.  
  * Object needs to be in group 0 to 31. default value is 0*/ 
  void SetGroupID(int nGroup); 
  /** Get the group ID to which this object belongs to. In order to be detected by other game object.*/
  int GetGroupID(); 
 
  /** set the sentient field.  A bit field of sentient object. from lower bit to higher bits, it matches to the 
0-31 groups. @see SetGroupID() 
  * if this is 0x0000, it will detect no objects. If this is 0xffff, it will detects all objects in any of the 32 
groups.  
  * if this is 0x0001, it will only detect group 0.  
  * @param dwFieldOrGroup: this is either treated as field or group,depending on the bIsGroup 
parameter.  
  * @param bIsGroup: if this is true, dwFieldOrGroup is treated as a group number of which object 
will detect.  
  * if this is false, dwFieldOrGroup is treated as a bitwise field of which object will be detected.  
  */ 
  void SetSentientField(DWORD dwFieldOrGroup, bool bIsGroup=false); 
  /** @see SetSentientField*/ 
  DWORD GetSentientField(); 
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  /** return true if the current object is sentient to the specified object. If the object is always sentient, 
this function will always return true.*/ 
  bool IsSentientWith(const IGameObject * pObj); 
 
  /** whether the object is persistent in the world. If an object is persistent, it will be saved to the 
world's database. 
  if it is not persistent it will not be saved when the world closes. Player, OPC, some temporary 
movie actors may be non-persistent; whereas NPC are usually persistent to the world that it belongs 
to.*/ 
  bool IsPersistent(){return m_bIsPersistent;}; 
  /** whenever a persistent object is made non-persistent, the SaveToDB() function will actually 
remove it from the database and the action can not be recovered. 
  * so special caution must be given when using this function to prevent accidentally losing 
information.  
  @see IsPersistent() */ 
  void SetPersistent(bool bPersistent); 
   
  /** whether some of the fields are modified.It is up to the implementation class to provide this 
functionality if necessary. */ 
  virtual bool IsModified(); 
  /** set whether any field has been modified. */ 
  virtual void SetModified(bool bModified){m_bModified = bModified;}; 
} 
The above codes are explained in the following sections as character attributes and events. 

14.1.4.1 Character Simulation Attributes 
The most important attributes of a common game character are “global”, "Sentient", 

“AlwaysSentient”, “Sentient Radius”, “Perceptive Radius”, “Group ID” and “SentientField”. 
We will explain them one by one next.  

“global” is a Boolean specifying whether the character can move in the scene. The “global” 
attribute is usually assigned manually when the character is created. The computation to 
simulate a non-global or static character is far more economic than to simulate a global one, 
which can move in the scene autonomously. Pure reactive character is a typical non-global 
character.  

“sentient” is a Boolean which is automatically set on and off during character simulation. It 
specifies whether a game character needs to be simulated in the current frame. A huge game 
world may be populated with tens of thousands of characters, but most of them are not 
sentient. Consider a city with 1000 NPC and creatures. If the human player’s avatar is miles 
away from them, why bother to simulate them at all? On each simulation step, the character 
simulator can automatically wake up non-sentient characters and put sentient ones to sleep 
according to the values in the “sentient field” and “group ID” attributes of characters, as well 
as their relative positions. The character simulation code in Chapter 8.2.2 shows that the 
simulation time at a given frame is only linear to the number of sentient characters currently 
in the scene. It has nothing or little to do with the total number of loaded game characters. In 
other words, the character simulation complexity is O(N), where N is the number of sentient 
game objects currently in the scene. 

“AlwaysSentient” is a Boolean telling whether a certain character should always be sentient. 
The simulator will never make an “AlwaysSentient” character non-sentient. Always sentient 
characters in a game are usually the origin of the AI logic triggering chains. The most 
common “AlwaysSentient” character is the human player’s avatar in the game world. When 
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an “AlwaysSentient” character is in the scene, the character simulator will wake up all other 
relevant characters which can sense it and in its vicinity. In a RTS (real-time strategy) game, 
all game units may need to be always sentient; in a RPG game, only the main player need to 
be always sentient; and in a MMORPG (massively multiplayer online role playing game), the 
game server may need to treat all clients’ avatars and the Boss NPCs as “AlwaysSentient” 
characters and everything else, such as ordinary NPC, re-spawning creatures as not 
“AlwaysSentient”.  

“Sentient Radius” is an important radius that the character simulator used to generate 
sensor events for a character. The sentient radius is usually a large radius, such as 50-100 
meters or it can be proportional to the camera view frustum radius. The spherical region 
specified by a character’s sentient radius is used to wake up other non-sentient objects in this 
range. Consider an “AlwaysSentient” player walks along a path, it will keep waking up all 
other non-sentient objects whose sentient area intersect with it; whereas the character 
simulator also keeps putting sentient objects to sleep when their sentient area are no longer 
inside that of any other interested sentient characters. See Figure 14.1. Two events are fired 
by the character simulator whenever a character changes states between sentient and non-
sentient. They are On_EnterSentientArea and On_LeaveSentientArea. The On_FrameMove 
event and various other AI modules (which we will see in later sections) are called every few 
frames during the time when a character is sentient.  

  

Figure 14.1 Sentient radius and swept region 

“Perceptive Radius” is an important radius that the character simulator uses to generate 
sensor events for a character. The character simulator will call On_Perceive event of a given 
character on a simulation frame if and only if (1) the character is sentient (2) there are other 
interested characters in the perceptive radius of this character. Hence, the perceptive radius is 
always smaller than the sentient radius. The reason that we need both sentient and perceptive 
radiuses is that we can have two sets (layers) of AI functions at different ranges. One can 
define more radiuses if one likes. But two layers of AI at different ranges are generally 
enough for most game scenarios. For example, in the first layer or within the sentient radius, 
the character just moves using some predefined patterns, such as patrolling. In the second 
layer or within the smaller perceptive radius, the character may issue actions according to its 
perceptions, such as attacking a player, etc.  
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 “Group ID” is an integer from 0 to 31, denoting 32 groups. Any character in the scene is 
assigned to one of the 32 groups. By assigning group ID to characters, we can define 
relationships between characters from different and/or the same groups. For example, we can 
define rules such that characters from group 0 can only perceive characters from group 1 and 
group 2. Such group relationship information is encoded in a 32bit DWORD attribute called 
“SentientField” (see the next paragraph). In an actual game, we may put all players to one 
group, all network players to one group, all static task NPCs to one group, all ally creatures to 
one group, all enemy creatures to one group, all cinematic movie character to one group, all 
dummy NPC to one group, etc. The reason to partition game characters by groups is that the 
character simulator only needs to care about pair of characters whose group IDs are related. 
This will greatly reduce the total number of sentient characters in the scene as well as number 
of interested (relevant) characters in the vicinity of any sentient character.  

“SentientField” is a 32bits DWORD, from lower bits to higher bits, each denoting one of 
the 32 groups. If any bit of the “SentientField” is 1, it means that the character is able to sense 
characters belonging to that group; and if any bit is 0, it means that the character can not sense 
or is irrelevant to characters from the corresponding group. For example, with sentient field 
0x1, the object is only interested in or sentient with group 0; with sentient field 0xffffffff, the 
object is interested in characters of any group. Table 14.1 shows several typical game 
character types and their typical group ID and sentient field values.  

Table 14.1 Typical game characters and their group ID and sentient field  

Player Movie Character Static NPC Enemy creatures  
S-field\G-ID Group 0 Group 1 Group 2 Group 3 

Bit 0 1 1 0 1 

Bit 1 1 0 0 1 

Bit 2 1 0 0 1 or 0 

Bit 3 1 0 0 0 

Sentient Field 0xF 0x1 0x0 0x7 or 0x3 

 

14.1.4.2 Character Simulation Events 
There are five typical events that the character simulator calls automatically. The character 

AI code can be written directly in them or be called from them.  

 Table 14.2 Character simulation events 

On_Load Called when the character is loaded from disk or database to the 
scene. Although it is not called by the character simulator, it looks 
and functions like a simulation event. 

On_EnterSentientArea When other game objects of a different type entered the sentient 
area of this object. This function will be automatically called by 
the character simulator. 
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On_LeaveSentientArea When no other game objects of different type is in the sentient 
area of this object. This function will be automatically called by 
the character simulator. 

On_Click When the player clicked on this object.  This function will be 
automatically called by the character simulator. 

On_Perception When other game objects of a different type entered the perceptive 
area of this object. This function will be automatically called by 
the character simulator. 

On_FrameMove This function is called every frame when the character is sentient. 
This is mostly used by AI controllers. 

Each event can be optionally associated with a script file. Whenever an event is fired, the 
associated script is also called. We have not talked about scripting yet, but one can think of 
them as programs to be compiled and executed at runtime. One can have a quick glance at the 
scripting chapter for a brief introduction to game scripting technology. In this chapter, we will 
only look at C++ or hard-coded AI code in the game engine. In the following sections, we 
will see using AI controllers in the On_FrameMove events to achieve a variety of character 
behaviors. 

14.1.5 AI Controllers 
AI controller is a reusable C++ AI code pattern. We will examine four kinds of AI 

controllers in this chapter, they are facing tracking controller, follow controller, movie 
controller and sequence controller. A character may be assigned any number of AI controller 
instances at runtime. There are some internally defined priorities between different kinds of 
AI controllers. The character simulator, which we have examined in previous section, 
automatically executes all the AI controllers that are associated with a sentient character at 
each simulation frame.  

All AI controllers have a virtual function called FrameMove(), which are called 
automatically per frame. We can think of it being called inside or just before 
On_FrameMove() event of the character. Because the FrameMove() function call of AI 
controllers originate from the character simulator, the code inside FrameMove() can access all 
perceived characters in its vicinity. Some controllers that we used in ParaEngine are given 
next.  

14.1.5.1 Face Tracking Controller 
Face tracking controller controls a character to always face a given target or another 

character. Face tracking controller has relatively high priority. The implementation is very 
simple. In the FrameMove() function of the controller, it just retrieve the closest character 
from its perceived character list and set the facing accordingly. This controller is commonly 
used when a player approaches an NPC. The NPC with a face tracking controller will 
automatically rotates its neck to face the incoming player. 
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14.1.5.2 Follow Controller 
Follow controller controls a character to follow another character as long as the target is in 

sight. The implementation is straight forward. It first searches if the target is in sight by 
examining in its perceived character list. If the target is perceived, it just commands the 
character to walk towards it until some minimum distance to the target is reached.  

14.1.5.3 Movie Controller 
Movie controller controls a character to act according to some predefined action script. The 

script is a list of time and action pairs. Movie controller is suitable for playing back time 
accurate character motions. The implementation is very similar to the key framed character 
animation system, except that the keys are the character positions in the scene, the animation 
IDs to play, the dialogs to speak, etc.  

14.1.5.4 Sequence Controller 
Sequence controller controls a character according to some predefined sequenced 

commands list. It executes at most one command per frame, and it will only execute the next 
command when the current command is finished or timed out. Sequence controller is similar 
to movie controller, except that its progression is dependent on the termination of a command, 
instead of time. One can think of a sequence controller as a short computer program. The 
program may contain branch and loop operations. Instead of using a separate C++ thread to 
execute this program, the sequence controller executes at most one command per simulation 
step in the main thread. The following code shows a list of common instructions supported by 
a sequence controller.  
  /** run to a position relative to the current position. */ 
  void RunTo(float x,float y,float z); 
  /** walk to a position relative to the current position. */ 
  void WalkTo(float x,float y,float z); 
  /** move (using the current style i.e. walk or run) to a position relative to the current position. */ 
  void MoveTo(float x,float y,float z); 
  /** play an animation by animation name */ 
  void PlayAnim(const string& sAnim); 
  /** play an animation by animation id */ 
  void PlayAnim(int nAnimID); 
  /** wait the specified seconds, without further processing commands */ 
  void Wait(float fSeconds); 
  /** execute a given script command*/ 
  void Exec(const string& sCmd); 
  /** pause the sequence infinitely until some one resumes it. */ 
  void Pause(); 
  /** turn the character to face a given absolute direction in radian value. */ 
  void Turn(float fAngleAbsolute); 
  /** move forward using the current facing a given distance*/ 
  void MoveForward(float fDistance); 
  /** move backward using the current facing a given distance*/ 
  void MoveBack(float fDistance); 
  /** move left using the current facing a given distance*/ 
  void MoveLeft(float fDistance); 
  /** move right using the current facing a given distance*/ 
  void MoveRight(float fDistance); 
  /** Jump once */ 
  void Jump(); 
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  /** offset the current sequence commands by a given steps. */ 
  void Goto(int nOffset); 
  /** offset to a label, if label not found, it will wrap to the beginning. */ 
  void Goto(const string& sLable); 
  /** add a new label at the current position. */ 
  void Lable(const string& sLable); 

Sequence controller can be combined with character sensor events to build fairly complex 
AI logics. A sequence controller alone can be used to model behaviors such as patrolling 
guards, wandering enemy creatures, busy citizens on a city street, etc. Sequence and movie 
controllers are usually used via the scripting interface. Although we have not covered 
scripting in game engine, one can still easily preview the script code example of a sequence 
controller. See below.  
local s = player:ToCharacter():GetSeqController(); 
s:BeginAddKeys(); 
 s:Lable("start"); 
 s:PlayAnim("EmotePoint"); 
 s:WalkTo(10,0,0); 
 s:Wait(0); 
 s:Turn(-1.57); 
 s:WalkTo(-5,0,0);s:Jump();s:RunTo(-5,0,0); 
 s:Exec(";NPC_SEQ_EXEC_Test()"); 
 s:Goto("start"); 
s:EndAddKeys(); 

 

14.1.6 Frame Rate of AI Logics 
The character simulation engine is executed at a high frame rate, such as 30 FPS. However, 

not all AI logics need to be executed at such a high rate, we can save three to five times 
computation by simply adjusting the frame rate of some AI modules to a lower value, such as 
10FPS or 6 FPS, or even lower depending on the type of AI concerned. On the other hand, 
distributing AI code into several frames is also a very good idea.  

However, if the same character is subject to several AI modules each of which are 
operating at different frame rates, there could be some tricky issues to deal with. Figure 14.2 
shows the different game engine modules which may affect the behavior of a simulated 
character. AI module with high priority will override behaviors generated by AI modules with 
low priority. AI modules with high priority usually executes at a slightly higher frame rate 
than those with low priority.  
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 Figure 14.2 Frame rate and priority of AI modules 

Implementing a low priority AI module could get increasingly complicated when there are 
more high priority AI modules working together. Take the sequence controller for example. It 
has very low priority and frame rate. Many other controllers may override the behavior 
generated by a sequence controller. For example, a sequence controller controls a character 
walking in circles; then suddenly the character perceives a player, the follow controller is 
activated and the character begins to walk after the player instead of doing its routine circling; 
after a while, the character follows the player into a deep hole on the ground; the game 
physics engine immediately detects this and it works with the character state manager to play 
a falling down animation; after falling down the hole, the character loses sight of the player, 
and it tries to go back to its initial position and continue with its walk in circles there. In this 
long process, the sequence controller is suppressed by a number of high priority modules and 
for quite a long time. 

Another challenge of implementing low frame rate AI is that we need to make more 
predictions to the motions of the character in order to generate smooth animation under the 
normal render frame rate. Consider the following consecutive commands in the sequence 
controller. 
s:WalkTo(10,0,0); 
s:WalkTo(0,0,10); 

What we intended is that the character should walk 10 units along the x axis, and then 10 
units along the y axis. This works fine if the sequence controller is running at the same frame 
rate as the character simulator. However, if the sequence controller is only executed every 0.2 
seconds or at 5 FPS, the result can be very different from what is expected. Without proper 
prediction, the character will first walk 10 units along the x axis, and before the next walk 
command is issued 0.2 seconds later, the character state manager determines that the character 
has already reached its destination and a standing animation will be wrongly inserted.  
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This problem is caused by different AI modules working at different frame rates. A 
workaround to this problem is to predict as much as possible. For example, in the sequence 
controller, we need to predict 0.2 seconds ahead. I.e. if the character is going to reach its 
destination in the next 0.2 seconds, we will immediately proceed to the next command 
without waiting till the next frame. Thus, the termination of any command in sequence 
controller is defined as below: a command terminates if it is going to meet its termination 
criterion in the next 0.2 seconds. By predicting 0.2 seconds ahead of time, the sequence 
controller can avoid idle frames that induce unnecessary animations. However, it also means 
that all commands of a sequence controller may be terminated at most 0.2 seconds earlier. If 
we want to carry out a command to its accurate completion, we can insert a wait(0) command 
(an empty command), which tells the sequence controller to wait 0 seconds (it actually waits 
0.2 seconds depending on the FPS of the sequence controller). See below.  
s:WalkTo(10,0,0); 
s:Wait(0); 
s:Turn(3.14); 
s:WalkTo(0,0,10); 

Of course, if the sequence controller in your implementation is a high priority AI module, 
the above Wait(0) command is not necessary.  

14.1.7 Summary of AI 
Game AI is very versatile. Due to the limited computation resources, game AI are usually 

designed in a layered or prioritized fashion, in which different modules may be running under 
different frame rates. Another characteristic of game AI is that the AI codes are usually not 
centralized in a single all-in-one module. Modern computer game engines features real-time 
physics and autonomous animations, which forces the AI (or character behavior related code) 
to be distributed in various places of the game engine. Script file is another place that AI code 
is usually placed in. This is especially true for RPG games with large number of unique game 
characters. With the up coming of Internet enabled games, AI logics is going to be distributed 
on the network.  

14.2 Architecture 
This section shows the basic architecture of the AI framework discussed in the chapter. 

14.2.1 Game Object Base Class 
All simulated characters need to be derived from a base game object or IGameObject. Figure 
14.3 shows an example. The biped object is derived from IGameObject, and an RPG 
character is derived from a biped object. IGameObject exposes a common interface used by 
the environment simulator. The interface is already shown in the previous Foundation section. 
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Figure 14.3 IGameObject inheritance graph 

 

14.2.2 AI Controller 
All AI controllers are also derived from a common base class called CBipedController as 

shown in Figure 14.4.  

 

Figure 14.4 AI controller inheritance graph 

The following shows the CBipedController interface. The most important function of a 
biped controller is the frame move function which is called by the character simulator every 
frame if the associated character is sentient.  
/** 
 * Base Interface for Biped controller. The AI module contains a collection of biped controllers 
 * for directing the behavior of the biped.Each biped controller derived from this class may 
 * control a certain aspect of the biped, such as UserController, MovieController, OPCController 
 * NPLController, FacingController, CollisionController, etc. 
 */ 
 class CBipedController 
 { 
 public: 
  CBipedController(CAIBase* pAI); 
  CBipedController(void); 
  virtual ~CBipedController(void); 
 private: 
  /** whether the controller is suspended, so it does not take effects on the next frame move.*/ 
  bool m_bSuspended; 
  /** to which this biped controller is associated.*/ 
  CAIBase*  m_pAI; 
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 protected: 
  /** total time elapsed since the controller is active (not suspended). */ 
  float m_fTimeElapsed; 
  
 public: 
  /** check whether the controller is active(not suspended).*/ 
  bool IsActive(); 
  /** suspend the controller, so it does not take effects on the next frame move.*/ 
  virtual void Suspend(); 
  /** resume the controller. */ 
  virtual void Resume(); 
  /** set the internal timer. This is useful when the behavior is relevant to the timer.*/ 
  virtual void SetTime(float fTime); 
  /** get the current movie time*/ 
  float GetTime(); 
  /** get the biped in the perceived biped list, which is closet to the current biped.  
  * @param pInput: the active biped list. 
  * return: NULL is returned if there is no closest biped. The pointer returned is only valid where 
pInput is valid*/ 
  IGameObject* GetClosestBiped(IGameObject* pInput); 
 
  /** Find a biped with a matching name. * is supported, which matches any character(s).  
  * @param pInput: the active biped list. 
  * @param searchString: e.g. "LiXizhi", "LXZ*" 
  */ 
  IGameObject* FindBiped(IGameObject* pInput, const std::string& searchString); 
 
  /** get the biped, to which this biped controller is associated. */ 
  CBipedObject* GetBiped(); 
  /** set the AI object to which this object is associated.*/ 
  void SetAI(CAIBase* pAI); 
   
  /** a virtual function which is called every frame to process the controller.  
  * @param fDeltaTime: the time elapsed since the last frame move is called.  
  */ 
  virtual void FrameMove(float fDeltaTime); 
 }; 
 

The collaboration of AI controllers with the character scene object and the character state 
manager is illustrated in the collaboration diagram shown in Figure 14.5. CAIBase and its 
derived classes are AI controller containers. For example, a typical NPC AI module may 
contain four AI controllers as shown in Figure 14.6.  
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Figure 14.5 Collaboration diagram for CBipedController 

 

 

Figure 14.6 Collaboration diagram for CAIModuleNPC 

 

14.2.3 Other AI Modules 
Other AI modules in ParaEngine can be found in other chapters of this book. The following is 
a quick reference to those places in the book. 

- Character simulator: in the simulation chapter 8. 

- Character state manager: in the character and animation chapter 12. 

- Character physics: in the simulation chapter 8.  

- Script based AI: in the scripting chapter 16 and Appendix B. 

- Path-finding: in the navigation chapter 15. 

14.3 Code and Performance Discussion 
This section provides some useful code snippets.  

14.3.1 Follow Controller 
Class structure 
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 /** a follow controller  
 * it will follow a given target or another biped.  
 * please note that the controller will only follow an object within its perceptive radius. */ 
 class CFollowCtrler : public CBipedController 
 { 
 public: 
  CFollowCtrler(void); 
  CFollowCtrler(CAIBase* pAI); 
  virtual ~CFollowCtrler(void); 
 private: 
  /// name of the biped to follow 
  std::string  m_sFollowTarget; 
  /// default radius around the target biped. it will control the biped to try it best to stand on this circle.
  float m_fRadius; 
  /// it will control the biped to stand beside the target with the target facing shifted by this value.  
  /// note that +-Pi means behind the biped.  
  float m_fAngleShift; 
 public: 
  /* 
  * Follow a biped at a specified circle position. 
  * @param obj: format "sName radius angle" | "sName" 
  * sName: it is the name of the biped to follow, 
  * radius: [optional, default to 2.5f] it is the default radius around the target biped. it will control the 
biped to try it best to stand on this circle. 
  * angle: [optional, default to Pi] it will control the biped to stand beside the target with the target 
facing shifted by this value.  
  * note that +-Pi means behind the biped.  
  * e.g. "lixizhi", "lixizhi 2.5 3.14", "lixizhi 3.0 0", "lixizhi 3.0 1.57", "lixizhi 3.0 -1.57" 
  */ 
  void SetFollowTarget(const std::string& obj); 
  const std::string& GetFollowTarget(); 
 
  /** a virtual function which is called every frame to process the controller.  
  * @param fDeltaTime: the time elapsed since the last frame move is called.  
  * @param pInput: It holds any information that is perceived by a Active Biped object 
  */ 
  virtual void FrameMove(float fDeltaTime); 
 }; 

 

Implementation 
void CFollowCtrler::FrameMove(float fDeltaTime) 
{ 
 CBipedObject * pBiped = GetBiped(); 
 IGameObject* pPercevied = FindBiped(pBiped, m_sFollowTarget); 
 if(pPercevied!=NULL && pBiped!=NULL && pPercevied-
>GetDistanceSq2D(pBiped)>MIN_FOLLOW_CATCHUP_DIST_SQUARE) 
 { 
  float fFacing = pPercevied->GetFacing() + m_fAngleShift; 
  D3DXVECTOR3 vDest; 
  pPercevied->GetPosition(&vDest); 
 
  vDest.x += cosf(fFacing)*m_fRadius; 
  vDest.z += sinf(fFacing)*m_fRadius; 
 
  CBipedStateManager* pState =  pBiped->GetBipedStateManager(); 
  if(pState) 
  { 
   pState->SetPos(vDest); 
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   pState->AddAction(CBipedStateManager::S_WALK_POINT); 
  } 
 } 
} 

 

14.3.2 Sequence Controller 
Class structure 
/** A sequence controller is a biped controller which moves the biped according to some predefined 
sequence. */ 
 class CSequenceCtler : public CBipedController 
 { 
 public: 
  CSequenceCtler(); 
  CSequenceCtler(CAIBase* pAI); 
  virtual ~CSequenceCtler(void); 
 public: 
  /** a virtual function which is called every frame to process the controller.  
  * @param fDeltaTime: the time elapsed since the last frame move is called.  
  */ 
  virtual void FrameMove(float fDeltaTime); 
 
  bool Save(bool bOverride); 
  bool Load(int nSequenceID); 
  bool Load(const string& fileName); 
  int  Create(const string& name, const string& description, const char* pData,bool bInMemory); 
  string ToString(); 
 
  /** Get the current absolute playing cursor position*/ 
  int GetKeyPos(){return m_nKeyPos;}; 
  /** set the current absolute playing cursor position*/ 
  void SetKeyPos(int nPos); 
   
  /** get total key count*/ 
  int GetTotalKeys(); 
  /** offset the key index according to the current play mode. i.e. it will automatically wrap to the 
beginning if looping.  
  @param nOffset: number of keys to advance.  
  @return: the number of keys that have been successfully offseted. Usually if the returned value is 
not equal to the input value, it means 
  that the sequence should be paused. */ 
  int AdvanceKey(int nOffset); 
  /** call the command functions(RunTo, MoveTo, etc) only between the matching pair of 
BeginAddKeys() and EndAddKeys()*/ 
  void BeginAddKeys(); 
  /** call the command functions(RunTo, MoveTo, etc) only between the matching pair of 
BeginAddKeys() and EndAddKeys()*/ 
  void EndAddKeys(); 
  /** get sequence ID*/ 
  int GetSequenceID(); 
  /** delete keys range  
  @param nFrom: 0 based index.  
  @param nTo: 0 based index, if -1, it means the last one. */ 
  bool DeleteKeysRange(int nFrom, int nTo); 
   
  /** get the play direction. */ 
  bool GetPlayDirection(){return m_bForward;}; 
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  /** set the play direction. */ 
  void SetPlayDirection(bool bForward){m_bForward = bForward;}; 
   
  /** the minimum time between two successive calls. */ 
  float GetInterval(){return m_fMinInterval;} 
  /** the minimum time between two successive calls. */ 
  void SetInterval(float fInterval){m_fMinInterval = fInterval;} 
 
  /** get the starting position. */ 
  D3DXVECTOR3 GetStartPos(){return m_vStartPos;} 
  /** set the starting position. */ 
  void SetStartPos(const D3DXVECTOR3& vPos){m_vStartPos = vPos;} 
 
  /** get the start facing. usually default to 0. */ 
  float GetStartFacing(){return m_fStartFacing;} 
  /** Set the start facing. usually default to 0. */ 
  void SetStartFacing(float facing){m_fStartFacing = facing;} 
 
  /** get the current play mode */ 
  int GetPlayMode(){return (int)m_nPlayMode;} 
  /** set the current play mode */ 
  void SetPlayMode(int mode); 
   
  /** get the number of seconds after which all move commands will be treated as finished.  
  default value is 30 seconds. */ 
  float GetMovingTimeout(){return m_fMovingTimeOut;} 
  /** set the number of seconds after which all move commands will be treated as finished.  
  default value is 30 seconds. */ 
  void SetMovingTimeout(float fTimeout){m_fMovingTimeOut=fTimeout;} 
 
 ////////////////////////////////////////////////////////////////////////// 
 // commands: 
 public: 
  /** run to a position relative to the current position. */ 
  void RunTo(float x,float y,float z); 
  /** walk to a position relative to the current position. */ 
  void WalkTo(float x,float y,float z); 
  /** move (using the current style i.e. walk or run) to a position relative to the current position. */ 
  void MoveTo(float x,float y,float z); 
  /** play an animation by animation name */ 
  void PlayAnim(const string& sAnim); 
  /** play an animation by animation id */ 
  void PlayAnim(int nAnimID); 
  /** wait the specified seconds, without further processing commands */ 
  void Wait(float fSeconds); 
  /** execute a given script command*/ 
  void Exec(const string& sCmd); 
  /** pause the sequence infinitely until some one resumes it. */ 
  void Pause(); 
  /** turn the character to face a given absolute direction in radian value. */ 
  void Turn(float fAngleAbsolute); 
  /** move forward using the current facing a given distance*/ 
  void MoveForward(float fDistance); 
  /** move backward using the current facing a given distance*/ 
  void MoveBack(float fDistance); 
  /** move left using the current facing a given distance*/ 
  void MoveLeft(float fDistance); 
  /** move right using the current facing a given distance*/ 
  void MoveRight(float fDistance); 
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  /** Jump once */ 
  void Jump(); 
  /** offset the current sequence commands by a given steps. */ 
  void Goto(int nOffset); 
  /** offset to a label, if label not found, it will wrap to the beginning. */ 
  void Goto(const string& sLable); 
  /** add a new label at the current position. */ 
  void Lable(const string& sLable); 
   
 private: 
  SequenceEntity* m_pSequenceEntity; 
   
  enum SEQ_STATE{ 
   SEQ_EMPTY,  // empty  
   SEQ_CREATED, // only resides in memory 
   SEQ_MANAGED, // is being managed by the manager 
  }m_nSequenceState; 
  /** sequence name */ 
  string   m_name; 
  /** description */ 
  string   m_description; 
  /** whether how sequence should be played. */ 
  int m_nPlayMode; 
  /** initial position in world coordinate */ 
  D3DXVECTOR3  m_vStartPos; 
  /** initial facing */ 
  float   m_fStartFacing; 
  int m_nKeyPos; 
  bool m_bIsAddingKey; 
  /** whether is playing forward*/ 
  bool m_bForward; 
  /** 1/FPS, where FPS is the frequency of valid activation. */ 
  float m_fMinInterval; 
  float m_fUnprocessedTime; 
  /** the number seconds that a sequence item has been executed. */ 
  float m_fItemDuration; 
  /** the number of seconds after which all move commands will be treated as finished.  
  default value is 30 seconds. */ 
  float m_fMovingTimeOut; 
  /** default to 1 seconds */ 
  float m_fTurningTimeOut; 
   
  /** copy the entity parameter to this controller.*/ 
  void CopyEntityParamter(const SequenceEntity& e); 
  /** assign a new sequence to replace the current one. */ 
  void SetEntity(SequenceEntity* e); 
 }; 
 

Implementation 
int CSequenceCtler::AdvanceKey(int nOffset) 
{ 
 int nCount = m_pSequenceEntity->GetTotalKeys(); 
 if(nCount == 0) 
  return 0; 
 int nPos = m_nKeyPos+nOffset; 
 if(nPos<nCount && nPos>=0) 
  m_nKeyPos = nPos; 
 else 
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 { 
  switch(m_nPlayMode) 
  { 
  case SequenceEntity::PLAYMODE_FORWORD: 
  case SequenceEntity::PLAYMODE_BACKWORD: 
   if(nPos >= nCount) 
   { 
    nOffset = nCount-m_nKeyPos-1; 
    m_nKeyPos = nCount-1; 
   } 
   else // if(nPos<0) 
   { 
    nOffset = m_nKeyPos; 
    m_nKeyPos = 0; 
   } 
   break; 
  case SequenceEntity::PLAYMODE_FORWORD_LOOPED: 
  case SequenceEntity::PLAYMODE_BACKWORD_LOOPED: 
   if(nPos >= nCount) 
   { 
    nPos = nPos%nCount; 
    m_nKeyPos = nPos; 
   } 
   else // if(nPos<0) 
   { 
    nPos = nCount - (-nPos)%nCount; 
    nOffset = nPos; 
   } 
   break; 
  case SequenceEntity::PLAYMODE_ZIGZAG: 
   if(nPos >= nCount) 
   { 
    m_bForward = false; 
    nPos = nPos%nCount; 
    m_nKeyPos = nCount - nPos; 
   } 
   else // if(nPos<0) 
   { 
    m_bForward = true; 
    nPos = (-nPos)%nCount; 
    nOffset = nPos; 
   } 
   break; 
  default: 
   break; 
  } 
 } 
 assert(m_nKeyPos>=0 && m_nKeyPos<nCount); 
 return nOffset; 
} 
void CSequenceCtler::FrameMove(float fDeltaTime) 
{ 
 if(IsActive()) 
 { 
  CBipedObject* pBiped = GetBiped(); 
  CBipedStateManager* pState = NULL; 
  if(pBiped==NULL || (pState=pBiped->GetBipedStateManager())== NULL) 
   return; 
  // process FPS.  
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  m_fUnprocessedTime += fDeltaTime; 
  fDeltaTime = m_fUnprocessedTime; 
  m_fItemDuration += fDeltaTime; 
  if(m_fUnprocessedTime> m_fMinInterval) 
   m_fUnprocessedTime = 0; 
  else 
   return; 
  bool bFinished = false; 
   
  ////////////////////////////////////////////////////////////////////////// 
  // 
  // check if the current sequence command is finished 
  // 
  ////////////////////////////////////////////////////////////////////////// 
  SequenceEntity::SequenceItem& item =  m_pSequenceEntity->GetItem(m_nKeyPos); 
  int nOffset = m_bForward?1:-1; 
  switch(item.m_commandtype) 
  { 
  case SequenceEntity::CMD_MoveTo: 
  case SequenceEntity::CMD_WalkTo: 
  case SequenceEntity::CMD_RunTo: 
  case SequenceEntity::CMD_MoveForward: 
  case SequenceEntity::CMD_MoveBack: 
  case SequenceEntity::CMD_MoveLeft: 
  case SequenceEntity::CMD_MoveRight: 
   { 
    if(m_fItemDuration > m_fMovingTimeOut) 
    { 
     bFinished = true; 
    } 
    else 
    { 
     D3DXVECTOR3 vCurPos =  pBiped->GetPosition(); 
     D3DXVECTOR3 vDest = item.m_vPos+m_vStartPos; 
     if (CMath::CompareXZ(vCurPos, vDest, 0.01f)) 
     { 
      bFinished = true; 
     } 
     else if(pBiped->IsStanding()) 
     { 
      nOffset = 0; 
      bFinished = true; 
     } 
    } 
    break; 
   } 
  case SequenceEntity::CMD_Turn: 
   { 
    if(m_fItemDuration > m_fTurningTimeOut) 
    { 
     bFinished = true; 
    } 
    else 
    { 
     float fCurFacing =  pBiped->GetFacing(); 
     float fFacing = item.m_fFacing + m_fStartFacing;  
     if (abs(fFacing-fCurFacing)<0.01f) 
     { 
      bFinished = true; 
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     } 
    } 
     
    break; 
   } 
  case SequenceEntity::CMD_Wait: 
   { 
    bFinished = (m_fItemDuration >= item.m_fWaitSeconds); 
    break; 
   } 
  default: 
   bFinished = true; 
   break; 
  } 
 
  if(bFinished) 
  { 
   ////////////////////////////////////////////////////////////////////////// 
   // 
   // process the next sequence command 
   // 
   ////////////////////////////////////////////////////////////////////////// 
   m_fItemDuration = 0; 
   bool bEndOfSequence = AdvanceKey(nOffset) != nOffset; 
 
   if(bEndOfSequence) 
   { 
    Suspend(); 
    return; 
   } 
    
   SequenceEntity::SequenceItem& item =  m_pSequenceEntity->GetItem(m_nKeyPos); 
   D3DXVECTOR3 vDest = item.m_vPos+m_vStartPos; 
   float fFacing = item.m_fFacing; 
   switch(item.m_commandtype) 
   { 
   case SequenceEntity::CMD_MoveTo: 
   case SequenceEntity::CMD_WalkTo: 
   case SequenceEntity::CMD_RunTo: 
   case SequenceEntity::CMD_MoveForward: 
   case SequenceEntity::CMD_MoveBack: 
   case SequenceEntity::CMD_MoveLeft: 
   case SequenceEntity::CMD_MoveRight: 
    pState->SetPos(vDest); 
    pState->SetAngleDelta(fFacing); 
    if(item.m_commandtype == SequenceEntity::CMD_WalkTo) 
     pState->SetWalkOrRun(true); 
    else if(item.m_commandtype == SequenceEntity::CMD_RunTo) 
     pState->SetWalkOrRun(false); 
 
    pState->AddAction(CBipedStateManager::S_WALK_POINT, (const void*)1); 
    break; 
   case SequenceEntity::CMD_Turn: 
    { 
     pBiped->FacingTarget(fFacing); 
     break; 
    } 
   case SequenceEntity::CMD_Exec: 
    { 
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     string sFile, sCode; 
     DevideString(item.m_strParam, sFile, sCode, ';'); 
     CGlobals::GetScene()->GetScripts().AddScript(sFile, 0, sCode, pBiped);  
     break; 
    } 
   case SequenceEntity::CMD_Pause: 
    { 
     Suspend(); 
     break; 
    } 
   case SequenceEntity::CMD_PlayAnim: 
    { 
     if(!item.m_strParam.empty()) 
      pState->AddAction(CBipedStateManager::S_ACTIONKEY, 
&ActionKey(item.m_strParam)); 
     else 
      pState->AddAction(CBipedStateManager::S_ACTIONKEY, 
&ActionKey(item.m_dwValue)); 
 
     break; 
    } 
   case SequenceEntity::CMD_Jump: 
    { 
     pState->AddAction(CBipedStateManager::S_JUMP_START); 
     break; 
    } 
   case SequenceEntity::CMD_Goto: 
    { 
     if(!item.m_strParam.empty()) 
     {  
      // m_nGotoOffset is absolute position for goto command with Labels, so ...  
      AdvanceKey(item.m_nGotoOffset - m_nKeyPos); 
     } 
     else if(AdvanceKey(item.m_nGotoOffset) != item.m_nGotoOffset) 
      Suspend(); 
     break; 
    } 
   default: 
    break; 
   } 
  } 
 } 
} 
 

14.4 Summary and Outlook 
In this chapter, we have examined how game AI can be implemented from a game engine’s 

perspective. AI is a very versatile and broad topic and it worth 3 books like this to write about 
in details. Despite of this, this chapter tries to sort out most practical AI techniques used in the 
RPG game genre and described a valid and common AI framework, where pieces of specific 
AI logics can fit together. The task of AI framework in a game engine is to provide means for 
designers and programmers to add game specific AI logics after the game engine is released, 
as well as integrating custom AI modules with other modules in the game engine, such as 
physics, animations, etc.  
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Obviously there are quite a number of AI techniques that are not covered in this chapter. 
Some of them can be found in third-party middleware as well, such as procedural animation, 
path-finding, flocking and crowd simulation, HFSM (hierarchical finite-state machine) editors, 
and scripting systems, etc.  

However, it should be pointed out that any game AI is built on top of some underlying 
engine technology, and is built in the context of a specific game design. If either one of these 
things changes significantly, it may break the AI framework completely.  

On the tech side, if one changes the character simulation, the game object representation, or 
the animation system significantly, one may well have to modify, if not rewrite it from scratch, 
significant portion of AI code. Similarly, on the design side, a huge amount of work in AI 
involves tuning and tweaking it for a specific game. The real challenge in game AI is 
customizing it to be a perfect fit for a certain game design. Game engine developers need to 
be aware of this. 

In the long run, we can hope for a unified AI framework which could deal with all virtual 
and real world situations. The invention of computers brings AI; and it is all because of AI 
that we use a computer. AI in computer games is about human-like AI, which is most 
challenging and fascinating to us.  
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Chapter 15 Navigating in 3D world 

In previous chapters, we have shown how a 3D world can be modeled, rendered and 
simulated. This chapter focuses on navigation in the 3D game world. In most games, camera 
system is the primary navigation tool for players. Game characters in the scene also need their 
own navigation systems to travel in the world either autonomously or through some 
predefined routes. This chapter is organized in several navigation related topics. 

15.1 Camera Control 
The major view into the 3D game world is controlled by the game engine’s camera control 

system. The main task of a camera control system is positioning the camera in the 3D world 
to provide a good view of some relevant 3D objects. In a game engine, we usually define a 
good view as a set of measurable constraints, some of which are defined by game rules and 
others are related to the physical environment. For example, we may require that the camera 
having an unobstructed view of the main player in the 3D environment.  

15.1.1 Background 
Automatically planning camera shots in 3D virtual environments requires solving problems 

similar to those faced by human cinematographers. In the most essential terms, each shot must 
communicate some specified visual message or goal. Consequently, the camera must be 
carefully staged to clearly view the relevant subject(s), properly emphasize the important 
elements in the shot, and compose an engaging image that holds the viewer’s attention. The 
constraint-based approach to camera planning in 3D virtual environments is built upon the 
assumption that camera shots are composed to communicate a specified visual message 
expressed in the form of constraints on how subjects appear in the frame. An external module 
issues a request to visualize some given subjects and specifies how each should be viewed; 
then a constraint solver attempts to find a camera shot solution which satisfies these 
constraints, including all camera parameters such as position and orientation.  

For example, there are constraints for different camera modes, such as third person, first 
person, birds view, etc. There are constraints for certain scene objects, such as a camera 
frustum must either stay under water or above water, but not in the middle. There are 
constraints that force the camera to move along some predefined route. One of the most 
important camera constraints in game, however, is occlusion constraint. 

15.1.2 Occlusion Constraint 
Occlusion constraint is about reposition the camera so that the camera view frustum stays in 

free space and there are no opaque physical objects between the camera eye position and the 
look at point. We have seen some games that make object meshes transparent when they 
intersect with the camera view frustum or obstruct the camera view. In fact, this can be our 
last resolve if there are no solutions by simply reposition the camera in the scene. Below is the 
occlusion solver implementation. Please note that it requires that the physics engine to 
provide the query results.  
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Occlusion constraint is usually applied after all other camera constraints are applied. The 
output from the previous constraint solver becomes the input of the occlusion constraint 
solver. 

Input: 

- vEye: desired camera eye position 
- vLookAt: desired camera look at position  
Goal: 

Adjust vEye and vLookat, so that:  

(1) There are no physical objects in between 

(2) The near plane of the camera view frustum does not collide with any mesh object or the 
terrain 

Solver for Goal (1): Line of Sight Solver 

Cast a ray from the desired look at position to desired eye position. If the ray hits any 
physical object, let fLineOfSightLen be the distance from the intersection point to the ray 
origin. If the ray hits nothing, fLineOfSightLen is infinity. The output camera parameters are 
further determined using the value of fLineOfSightLen as below.  
- If fLineOfSightLen is larger than the line of sight with the desired camera position, then the desired 

eye position and look at position are adopted. 
- If fLineOfSightLen is smaller than the distance from the near camera plane to the camera eye; the 

camera position does not change (both eye and look at location remain unchanged).  
- If fLineOfSightLen is smaller than the line of sight with the desired camera position, but larger than 

the distance from the near camera plane to the camera eye, the desired look at position is adopted, 
whereas the camera eye position is changed to the interaction point, and the camera eye 
movement speed is set to infinity 

 

Solver for Goal (2): View Frustum Solver 

For all kinds of cameras, we ensure that the camera’s near plane rectangular and the eye 
position are well above the terrain surface. This is done by casting five rays from the five 
points (four are the corners of the near plane, one is the camera eye) downwards (along the 
negative Y axis) to the terrain surface. We will translate the camera eye position upward until 
all ray-terrain distances are positive. A similar method is used to avoid camera’s near plane 
from intersecting with the physical mesh. This is done by casting a ray from the center of the 
near plane downward to see if it intersects with the physics mesh. Finally, we shift both the 
camera eye and camera look at position along the positive Y axis (world up) for some small 
distance calculated during the previous step.  

Figure 15.1 shows an indoor camera automatically adjusted to provide an unobstructed 
view of the player in control.  
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Figure 15.1 Camera Occlusion Constraint and Physics 

15.1.2.1 Code 
Here is the code snippet for occlusion constraint. 
 // solver 1 
 { 
   /// the vector from the new look at position to the new camera eye position. 
   D3DXVECTOR3 vReverseLineOfSight = vEye-vLookAt; 
   float fDesiredLineOfSightLen = D3DXVec3Length(&vReverseLineOfSight); 
   float fMinLineOfSightLen = m_fNearPlane+fCharRadius; 
   if(fDesiredLineOfSightLen < fMinLineOfSightLen ) 
    fDesiredLineOfSightLen = fMinLineOfSightLen; 
 
   D3DXVec3Normalize(&vReverseLineOfSight, &vReverseLineOfSight); 
   D3DXVECTOR3 vHitPoint; 
   float fLineOfSightLen; 
   fLineOfSightLen = CGlobals::GetScene()->Pick(vLookAt, vReverseLineOfSight, NULL, 
&vHitPoint, false); 
   if((fLineOfSightLen >= fDesiredLineOfSightLen) || (fLineOfSightLen<0)) 
   { 
    // the new vEye, vLookAt is adopted. 
   } 
   else if (fLineOfSightLen<=fMinLineOfSightLen)  
   { 
    // restore to old value, nothing is changed.  
    vEye = m_vEye; 
    vLookAt = m_vLookAt; 
   } 
   else 
   { 
    // use the (hit point - NearPlane) as the new eye position. 
    vEye = vLookAt + vReverseLineOfSight*(fLineOfSightLen-m_fNearPlane); 
    // Increase the camera transition speed. 
    fEyeSpeed = m_fEyeSpeed * 5.f; 
    fLookAtSpeed = m_fLookAtSpeed * 10.f; 
   } 
   /** the following code implements smooth roll back of the camera.  
   */ 
   if(pBiped!=NULL) 
   { 
    float fCameraObjectDist = D3DXVec3Length(&(vLookAt-vEye)); 
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    // 1000.f is a large value, beyond which speed rollback is disabled. 
    //0.1f is minimum allowable object jerk distance. object smaller than this size will not cause 
smooth rollback animation to apply. 
    if(m_nForceNoRollbackFrames==0 && m_fCameraRollbackSpeed<1000.f &&  
     ( fCameraObjectDist >  
m_fLastCameraObjectDistance+max(m_fCameraRollbackSpeed*fElapsedTime, 0.1f)))  
    { 
     float fDist =  m_fLastCameraObjectDistance + m_fCameraRollbackSpeed*fElapsedTime; 
     vEye = vLookAt + (vEye-vLookAt)/fCameraObjectDist*fDist; 
     m_fLastCameraObjectDistance = fDist; 
    } 
    else 
     m_fLastCameraObjectDistance = fCameraObjectDist; 
   } 
 } 
 // solver 2 
 { 
  /** 
  * check for global terrain. 
  */ 
  // get the view matrix 
  D3DXMATRIX MatView; 
  D3DXMatrixLookAtLH( &MatView, &(m_vEye), &(m_vLookAt), &vWorldUp ); 
  D3DXMATRIX* pMatProj = GetProjMatrix(); 
 
  // get the four points on the near frustum plane 
  D3DXMATRIX mat; 
  D3DXMatrixMultiply( &mat, &MatView, pMatProj ); 
  D3DXMatrixInverse( &mat, NULL, &mat ); 
 
  D3DXVECTOR3 vecFrustum[6]; 
  vecFrustum[0] = D3DXVECTOR3(-1.0f, -1.0f,  0.0f); // xyz 
  vecFrustum[1] = D3DXVECTOR3( 1.0f, -1.0f,  0.0f); // Xyz 
  vecFrustum[2] = D3DXVECTOR3(-1.0f,  1.0f,  0.0f); // xYz 
  vecFrustum[3] = D3DXVECTOR3( 1.0f,  1.0f,  0.0f); // XYz 
  vecFrustum[5] = m_vEye; 
   
  for( int i = 0; i < 4; i++ ) 
   D3DXVec3TransformCoord( &vecFrustum[i], &vecFrustum[i], &mat ); 
 
  // one additional point (at the near plane bottom)to add more accuracy 
  vecFrustum[4] = (vecFrustum[0]+vecFrustum[1])/2;    
 
  float fShiftHeight = -EPSILON; 
  // for all five point, test 
  for( int i = 0; i < 6; i++ ) 
  { 
   float fMinHeight = CGlobals::GetGlobalTerrain()->GetElevation(vecFrustum[i].x, 
vecFrustum[i].z); 
   if( fShiftHeight < (fMinHeight-vecFrustum[i].y)) 
    fShiftHeight = fMinHeight-vecFrustum[i].y; 
  } 
  /// ignore camera collision with the terrain object, if the camera is well below the terrain 
surface.(may be in a cave or something) 
  /// 2 meters is just an arbitrary value.  
  if(fShiftHeight > 2.0f) 
   fShiftHeight = -EPSILON; 
 
  /** 
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  * check for physical meshes. 
  */ 
  { 
   D3DXVECTOR3 vHitPoint, vPt; 
   // the distance to check is m_fNearPlane*2, which is far larger than the near plane height 
   /// we will check three points around the near plane. 
   vPt=(vecFrustum[0]+vecFrustum[3])/2; 
   float fDist = CGlobals::GetScene()->Pick(vPt, D3DXVECTOR3(0,-1,0), NULL, &vHitPoint, false, 
m_fNearPlane*2);  
   vPt = (vecFrustum[0]+vecFrustum[2])/2; 
   float fDistTmp = CGlobals::GetScene()->Pick(vPt, D3DXVECTOR3(0,-1,0), NULL, &vHitPoint, 
false, m_fNearPlane*2); 
   fDist = min(fDistTmp, fDist); 
   vPt = (vecFrustum[1]+vecFrustum[3])/2; 
   fDistTmp = CGlobals::GetScene()->Pick(vPt, D3DXVECTOR3(0,-1,0), NULL, &vHitPoint, false, 
m_fNearPlane*2); 
   fDist = min(fDistTmp, fDist); 
    
   if(fDist>0) 
   { 
    float fNearPlaneHeight = D3DXVec3Length(&(vecFrustum[2]-vecFrustum[0])); 
    float fShift = fNearPlaneHeight/2-fDist+0.1f; 
    if(fShift > fShiftHeight) 
    { 
     fShiftHeight = fShift; 
    } 
   } 
  } 
 
  /** 
  * shift the distance 
  */ 
  if(fShiftHeight > -EPSILON) 
  { 
   m_vEye.y+=fShiftHeight; 
   m_vLookAt.y+=fShiftHeight; 
  } 
 

15.2 Generic Path Finding Algorithms 
Path finding is very common in video games. Few things make a game look "dumber" than 

bad path finding. Fortunately, path finding is mostly a "solved" problem. A* and its 
extensions are popular algorithms, which can efficiently build optimal paths between two 
endpoints, even if there is a long distance and many obstacles in the middle. 

Two useful path finding algorithms in games are (1) simple wall sliding and (2) A* 
algorithm. We have already implemented wall sliding in the simulation Chapter 8. A* path 
finding is not very suitable for outdoor games with extensive and dynamic maps. Instead we 
will look at some other general path-finding solutions based on simple geometries. 

15.2.1 Object Level Path Finding 
Object level path-finding is path-finding in the 3D world without taking the polygon-level 

shape of objects in to consideration. It is mostly used for NPC character navigations. In 



 

 254 

ParaEngine, object level path-finding will use the result generated by the character and 
environment simulator. Path-finding function is implemented by each biped object.  

The available information for path-finding includes the terrain tile that the character 
belongs to and the distance to all other characters and obstacles in its perceptive radius. The 
goal of path-finding is to generate additional waypoints to the desired destination. There are 
several kinds of waypoints that a path-finding algorithm can generate for a character. See 
Table 15.1. 

Table 15.1 Waypoint type 
enum WayPointType { 
 /// the player must arrive at this point, before proceeding to the next waypoint 
 COMMAND_POINT=0, 
 /// the player is turning to a new facing.  
 COMMAND_FACING, 
 /// when player is blocked, it may itself generate some path-finding points in  
 /// order to reach the next COMMAND_POINT.  
 PATHFINDING_POINT, 
 /// The player is blocked, and needs to wait fTimeLeft in order to proceed. 
 /// it may continue to be blocked, or walk along. Player in blocked state, does not have 
 /// a speed, so it can perform other static actions while in blocked mode.  
 BLOCKED 
}; 
 

The waypoint generation rules are given in Table 15.2. 

Table 15.2 Path-finding rule 

rule1: we will not prevent any collision; instead, path-finding is used only when there are already collisions 
between this biped and the environment by using the shortest path. 

rule2: if there have been collisions, we will see whether we have already given solutions in previous path-finding 
processes. If so, we will not generate new ones. 

rule 3: we will only generate a solution when the next way point is a command type point.  

 

A path finding solution can be generated as follow: when several objects collide with each 
other, only one object is selected to implement path-finding, while others are put to a blocked 
state. The selected object will pick the biggest object that collides with it and try to side-step it 
by generating additional waypoints between its current location and the original destination. 
See Figure 15.2 
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Figure 15.2 path-finding: adding dynamic waypoints 

 

15.2.2 Path-finding and Physics 
When path-finding and physics have conflicts, the physics always has the priority.  

Game physics is calculated in real coordinate system, if path-finding is also done in real 
coordinate system, things can get very complicated. For example, the player can be at any 
position in the set {x,y,z}, where x,y,z are real numbers. Object collisions therefore can not be 
simply denoted by two states 0, 1; instead some fuzzy function DepthOf (object1, object2) is 
used to return the collision depth as a real number between 0 and 1 inclusive. The larger the 
value, the deeper the two objects run into each other. This is why graph-based path-finding 
algorithm (like A*) can not be applied directly in real-coordinate system based 3D 
environment.  

To verify a solution generated by a real coordinate system based path-finding algorithm, we 
need to ensure that the sum of all collision depth values between each pair of collided objects 
decrease by at least some fixed value every frame.  

15.2.3 Code 
Since path-finding in real coordinate system involves tweaks for a specific game. We will 
only show the top level path-finding code that we implemented for biped object in our game. 
//--------------------------------------------------------------------------- 
/// desc: this function is called by the environment simulator, when needed.  
/// The biped object then get an opportunity to shun from any obstacles or 
/// try to solve collisions by generating additional way points.  

To To 

From 

Without 
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Add waypoints dynamically 

Way points 

1 2
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//--------------------------------------------------------------------------- 
void CBipedObject::PathFinding(double dTimeDelta) 
{ 
#ifdef TURNOFF_BIPED_COLLISION 
 return; 
#endif 
 /// rule1: we will not foresee any further, but implement path-finding only when  
 /// there is already collisions between this biped and the environment. 
 if(GetNumOfPerceivedObject()==0) 
  return; 
 
 BipedWayPoint waypoint; 
 D3DXVECTOR3 vSrcPos; 
 GetPosition(&vSrcPos); 
  
 while(GetWayPoint(&waypoint)) 
 { 
  /// rule2: if there have been collisions in the way, we will see whether we have already given  
  /// solutions in the previous path-finding process.If so, we will not generate new ones nor canceling 
it 
   
  if((waypoint.GetPointType() == BipedWayPoint::PATHFINDING_POINT) ||  
   (waypoint.GetPointType() == BipedWayPoint::BLOCKED)) 
   return; 
   
  /// rule 3: we will only generate a solution when the next way point is a command type point. 
  if(waypoint.GetPointType() == BipedWayPoint::COMMAND_POINT ) 
  { 
   // source and destination points 
   D3DXVECTOR3 vDestPos = waypoint.vPos; 
    
   { 
    /**  
    * already reached destination, we will go on to the next way point in the queue  
    * when there is collision, we will regard a circle(with a radius) as the destination point. 
    * while in free-collision condition, a destination is really a point. 
    */ 
    float fLength = D3DXVec3LengthSq(&(vDestPos-vSrcPos)); 
    if(fLength<=(dTimeDelta*GetAbsoluteSpeed())*(dTimeDelta*GetAbsoluteSpeed()) ||  
     fLength<=(GetPhysicsRadius()*GetPhysicsRadius())) 
    {  
     RemoveWayPoint(); 
     continue; 
    } 
   }  
    
   /** 
   * See whether there are bipeds that are moving. If so, block the current biped for some seconds
   * or if the destination point(radius 0.01f)is inside one of the object, remove the way point 
   * Get the biggest non-mobile object 
   */ 
   bool bReachedObject = false; 
   bool bShouldBlock = false; 
   CBaseObject* objBiggest = NULL; 
   float fBiggestRadius = 0.f; 
   { 
    float fMyRadius = GetPhysicsRadius(); 
 
    int nNumPerceived = GetNumOfPerceivedObject(); 
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    for(int i=0;i<nNumPerceived;++i) 
    { 
     IGameObject* pObj = GetPerceivedObject(i); 
     if(pObj!=NULL) 
     { 
      if(pObj->TestCollisionSphere(&vDestPos, fMyRadius/*0.01f*OBJ_UNIT*/, 0)) 
      { 
       bReachedObject = true; 
       break; 
      } 
      if( ! pObj->IsStanding() ) 
       bShouldBlock = true; 
      if(!bShouldBlock && fBiggestRadius<= pObj->GetPhysicsRadius()) 
      { 
       fBiggestRadius = pObj->GetPhysicsRadius(); 
       objBiggest = pObj; 
      }  
     } 
      
    } 
   } 
   if(bReachedObject == true) 
   {  
    RemoveWayPoint(); 
    continue; 
   } 
   else if(bShouldBlock) 
   { 
    // TODO: set a reasonable value. Just wait 0.5 seconds 
    AddWayPoint(BipedWayPoint(0.5f)); 
    continue; // actually this is equivalent to return; 
   } 
 
   /** 
   * We will only solve against the biggest static object, we can give very precise solution  
   * according to its shape, when there is only one object. 
   */ 
   if(objBiggest) 
   { 
    OneObstaclePathFinding(objBiggest); 
    break; 
   } 
  } 
  else if(waypoint.GetPointType() == BipedWayPoint::COMMAND_MOVING) 
  { 
   CBaseObject* objBiggest = NULL; 
   float fBiggestRadius = 0.f; 
   { 
    float fMyRadius = GetPhysicsRadius(); 
    int nNumPerceived = GetNumOfPerceivedObject(); 
    for(int i=0;i<nNumPerceived;++i) 
    { 
     IGameObject* pObj = GetPerceivedObject(i); 
     if(pObj!=NULL) 
     { 
      if(fBiggestRadius<= pObj->GetPhysicsRadius()) 
      { 
       fBiggestRadius = pObj->GetPhysicsRadius(); 
       objBiggest = pObj; 
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      } 
     } 
    } 
   } 
   if(objBiggest) 
   { 
    OneObstaclePathFinding(objBiggest); 
    break; 
   } 
  } 
  else 
  { 
   return; 
  } 
 } 
} 
 

15.3 Summary and Outlook 
In 3D game world, there are three levels of navigation. This chapter talks about the first two. 

- Polygon level navigation: such as the camera controller and character’s collision 
avoidance with mesh objects. 

- Object level navigation: such as NPC character path-finding. 

- World level navigation: such as exploring new regions of the virtual world on the Internet. 

3D Navigation is also a good research topic. It involves not only algorithms, but also 
human computer interface (HCI) design and other psychological studies. As the game world 
gets bigger and bigger, rich HCI enabled navigation design and search technologies will 
become necessary. Aids objects such as symbols and marks can also be very helpful both for 
agent and human user. In fact, these things are already introduced in some latest adventure 
and MMORPG games. 

One of the greatest advantages about things going 3D is immersion or the player’s feel of 
being there. Yet one of the greatest disadvantages of going 3D is poor navigation compared to 
its 2D counter part. From the HCI perspective, this is mostly caused by the input devices that 
we used i.e. the mouse and the key board. If navigation in 3D games can be improved even 
slightly, it will give players a much more engaging gaming experience.  
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Chapter 16 NPL Scripting System 

Scripts are external programs loaded and executed by a game engine at runtime. It allows 
game logics to be composed outside the hard-core of a game engine. The original idea behind 
a custom scripting language for a game is that one does not have to hard-code every single 
possible event and conversation into the game executable. It also avoids the need to recompile 
the executable for the game each time one wishes to slightly alter the storyline. Modern game 
engines natively support this scripting paradigm, which allows game developers to extend the 
original scripting language according to specific game needs.   

In recently released computer games, most game contents are written in script files; these 
include GUI, game settings, event handlers, AI, and many other game logics. The scripting 
system in ParaEngine is called NPL scripting system. We build the entire scripting system 
based on some network infrastructure, so that script files does not necessarily run on a single 
client application, but may be deployed and run by multiple applications on the network. This 
makes writing and deploying networked computer games much easier and much more flexible.  

In this chapter, we will mainly focus on client side scripting system and its implementations. 
In the second volume of this book, we will focus on server technologies using the NPL 
scripting system.  

16.1 Foundation 
Building a scripting system by extending an existing language is a great short cut to 

immediately add scripting capabilities to your game engine in a matter of hours. There are 
several available base languages that one can choose from, such as Lua, Python, Java, and C#. 
Each of these languages has a number of successful games using it.  

We suggest Lua, which is a hidden secrete in the game community for a decade. Nowadays, 
it receives wide popularity among both large game studios and indie game developers. One 
will find rich community support on script editors, debuggers, wrappers for database, and 
many script examples from released games, etc. 

In ParaEngine, NPL scripting system is based on Lua, a popular light-weighted extensible 
language. It offers good support for object-oriented programming, functional programming, 
and data-driven programming. This chapter is not about telling you how to integrate Lua into 
your game engine. The Lua documentation and the community website have already done a 
good job on that. Instead, we are going to show you how to use the scripting paradigm most 
effectively in a game engine. Since the rest of the chapter is mainly written for developers, we 
assume that you have already read all the Lua documentation carefully.  

16.1.1 Using LuaBind 
LuaBind is a set of C++ templates, which makes binding C++ functions to Lua very easy. 

We have used it extensively in ParaEngine, except for a few occasions where their grammar 
involves flexible parameter passing.  

In the game engine, we build an exact C++ copy of everything that is exposed to the 
scripting interface and document them in the header files. Then we use LuaBind to bind these 
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C++ functions and classes to Lua tables. We do not advice to directly expose C++ objects 
which are used by the game engine to the scripting interface, because it will pollute the C++ 
game engine code and later become very difficult to separate code and documentations for the 
script and for the game engine. The following shows the example.  

Suppose we want to expose a game engine object CBaseObject to the scripting interface. 
Instead of using CBaseObject directly, we can create another dedicated wrapper class called 
ParaObject for exportation. ParaObject contains a pointer to CBaseObject as well as a set of 
wrapper functions of CBaseObject. Please note that we document ParaObject as if it is a script 
object. See below. 
 /** 
 * @ingroup ParaScene 
 * ParaObject class: 
 * it is used to control game scene objects from scripts. 
 @par Class Properties 
 
 - ("name",&ParaObject::GetName,&ParaObject::SetName) 
 */ 
 struct ParaObject 
 { 
 public: 
  CBaseObject* m_pObj;  // a pointer to the object 
   
  ParaObject():m_pObj(NULL){}; 
  ParaObject(CBaseObject* pObj):m_pObj(pObj){}; 
  ~ParaObject(){} 
 
  /** get the Runtime class information of the object. */ 
  string GetType() const; 
  /** get paraengine defined object type name.  
  // TODO: This function is not implemented 
  */ 
  int GetMyType() const; 
  /** 
  * check if the object is valid 
  */ 
  bool IsValid() const {return m_pObj!=NULL;} 
  /** whether the object has been attached to the scene. */ 
  bool IsAttached() const; 
 
  /** get the attribute object associated with an object. */ 
  ParaAttributeObject GetAttributeObject(); 
 
  /** Rotate the object. This only takes effects on objects having 3D orientation, such as 
  * static mesh and physics mesh. The orientation is computed in the following way: first rotate 
around  
  * x axis, then around y, finally z axis. 
  * Note: this function is safe to call for all kind of objects except the physics mesh object.  
  * for physics mesh object, one must call ParaScene.Attach() immediately after this function. 
  * for more information, please see SetPostion(); 
  * @param x: rotation around the x axis. 
  * @param y: rotation around the y axis. 
  * @param z: rotation around the z axis. 
  * @see: SetPostion(); 
  */ 
  void Rotate(float x, float y, float z); 
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  // … many wrapper functions are ignored here 
} 

 

Using LuaBind, we can easily bind the above class object to the scripting interface as below. 
After running the binding code, we will be able to use ParaObject from script files. 
module(L) 
 [ 
  namespace_("ParaScene") 
  [ 
   // ParaObject class declarations 
   class_<ParaObject>("ParaObject") 
    .def(constructor<>()) 
    .property("name",&ParaObject::GetName,&ParaObject::SetName) 
    .def("IsValid", &ParaObject::IsValid) 
    .def("GetType", &ParaObject::GetType) 
    .def("GetMyType", &ParaObject::GetMyType) 
    .def("IsAttached", &ParaObject::IsAttached) 
    .def("GetAttributeObject", &ParaObject::GetAttributeObject) 
    .def("Rotate", &ParaObject::Rotate) 
    // … many declarations ignored here 
  ] 
 ]; 

The above code does not look like C++ code, but in fact it is. One can debug into it to see 
how LuaBind generates the registration code at the compile time and run time.  

In Lua script file, we can use the ParaObject as below. 
-- suppose Obj is a ParaObject 
if( Obj:IsValid() == true ) then 
 Obj:Rotate(30, 0, 0); 
end 

The above programming paradigm provides us a centralized way to expose C++ objects to 
the scripting interface. In the next section, we will look at a decentralized way to expose C++ 
attributes to the scripting interface. 

16.1.2 Exporting C++ Attributes to Script 
In this section, we will look at another very automatic way to expose C++ object attributes 

to the scripting interface.  

In interpreted language like C#, there is a concept called class reflection, which allows 
programmers to query an object’s the class type information at runtime and execute functions 
found in the class type information. Class type information enables us to access an object’s 
properties and methods without knowing its class type at compile time. 

In C++, we can simulate this functionality with little code cost. Whenever we want to 
expose an attribute from a C++ class object such as the CBaseObject to the scripting interface, 
we just add the get and set methods of the attribute to the CBaseObject’s class type 
information, and it is done. We do not need to register the attribute in Lua and we do not need 
to make a copy of the set and get methods in the dedicated wrapper class (or ParaObject in 
this case). The only disadvantage is some decreased performance and slightly increased code 
length when getting or setting an object’s attributes in script files. Hence this method is 
suitable for exporting attributes and functions that are not called very frequently in script files.  
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In ParaEngine, we store class runtime information in an attribute object. All instances of a 
class share the same attribute object, which can be retrieved from a class instance by calling 
its GetAttributeObject() method; the attribute object can then be used to get and set attributes 
of the class instance.  

An attribute object contains a mapping from each attribute name string to whatever is 
needed to manipulate that attribute given a class instance pointer. The implementation is 
given below. Please note that the implementation is not unique. Generally speaking, there are 
three different implementations based on three different ways to store the type information. 
Each has its advantages and disadvantages. We will look at them one by one. 

16.1.2.1 Using Data Member Offset 
In this method, the attribute object maps each attribute name string to a corresponding class 

data member offset value. We can get the offset of a class’s data member using the following 
macro. 
 /** @def get the offset of a data member(x) from a class(cls) */ 
 #define Member_Offset(x, cls) (int)&(((cls *)0)->x) 

Given the pointer to a class instance, we can compute the memory address of the data 
member by adding the pointer to the member offset. This method requires the minimum effort 
to implement. However, it only works on data members, but not on member functions. 
Moreover, no data validation can be performed, so it is usually not safe to use. 

16.1.2.2 Using Member Function Pointers 
In this method, the attribute object maps each attribute name string to the corresponding 

class’s member function pointer. Given the pointer to a class instance, we can call its member 
function by the coorepsonding member function pointer.  

This sounds a very good idea. It is safe to use because class data is always set or get from 
class member functions, where data validation can be performed. However, C++ class 
member function pointer is not easy to store. There is a myth even among experienced C++ 
developers that member function pointers are merely some offset values like the class data 
member offset. Unfortunately, they are not that simple. Both STL and boost library provides 
some helper templates to ease the use of member functions in C++. One can refer to these 
places to find out why. 

Implementing the attribute object functionalities using member function pointers requires a 
great deal of template programming in C++, and one may end up with the wrong result. 
Hence, we advise the third method which is given next. 

16.1.2.3 Using Static Member Function Pointers 
This is our approach in NPL scripting system. The attribute object maps each attribute 

name string to the corresponding class’s static member function pointer. A static function uses 
stdcall calling convention and its function pointer has a fixed data length. Static class member 
function can simulate a member function by simply setting the first parameter to the class 
pointer. Take the CBaseObject for example; suppose we want to expose the SetPosition and 
GetPosition member functions of the CBaseObject, we just add two static functions as follow. 
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Class CBaseObject{ 
Public: 
 static int GetPosition_s (CBaseObject* cls, D3DXVECTOR3* p1) { 
  cls->GetPosition(p1); return S_OK; 
 } 
 static int SetPosition_s (CBaseObject* cls, D3DXVECTOR3 p1) { 
  cls->SetPosition(&p1); return S_OK; 
 } 
// … many code omitted 
} 

Given the pointer to a class instance, we just call the attribute’s corresponding static 
function and pass the class instance pointer as the first parameter. Although this is 
cumbersome sometimes (programmers need to add two more lines of code in the header file 
for each property), it works well with overloaded functions, multiple inheritance and virtual 
functions. Most importantly: (1) Attribute object only needs to be built once (automatically 
built on first use), and is valid for all instances of the same class type thereafter. (2) It gives 
programmers individual control over the behaviors of each attribute. E.g. we can make the 
behavior of the attribute's set/get methods slightly different from the corresponding class 
member functions, such as adding more robust data validation and error reporting 
functionalities, or even implicitly changing the class pointer, so that we can expose attributes 
from both an object’s class members and its base class. (3) It makes the executable file 
smaller compared with the implementation using template programming.  

Please see the code section for implementation details. 

16.1.3 Runtime State Management 
When loading or executing a script file, we must specify the runtime environment in which 

the script code is loaded and executed. One can think of each runtime environment as an 
independent virtual machine. The Lua’s runtime environment is fully reentrant: it has no 
global variables. The whole state of the Lua interpreter (global variables, stack, etc.) is stored 
in a dynamically allocated strcture called Lua state. Lua’s runtime environment is very light 
weighted, which allows us to create and host hundreds of those Lua states effectively. 
However, in most cases, we will load and execute script files in a shared global runtime state, 
which is created when the game engine starts. An alternative is to load and execute files in 
separate runtime states.  

There are some discussions on whether to use one giant runtime state or many small light-
weighted states. The design principle is usually not on performance, but on data sharing. In 
Lua, all functions and variables are data tables in a global environment. Hence script files 
loaded in the same runtime state can access all tables created in it. This is a very important 
feature, because otherwise the only way to share data is via the game engine. The following 
design principles can be helpful when developing your game.  

- GUI and major game logics run in the same main runtime state. 

- Most AI events run in the main runtime state, some may run in separate runtimes. 

- Any unsafe and unauthorized script code, such as those entered by the users or from the 
network, may need to run in separate runtime states. 
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16.1.4 Using Namespace 
The beauty of Lua is its flexibilities. However, without proper administration, we will 

quickly populate the main runtime state with tons of data and functions in a flat hierarchy. 
One solution to this problem is that we organize host API (which is exposed from the game 
engine to the script system. See Lua Documentation for details) into namespaces and 
encourage script writers to do the same for any class and data structures created in the script 
files.  

In actual game development, several designers and programmers may jointly work on the 
thousands of script files. They have little idea how other people are going to name variables in 
their script files. Hence it is good practice to define a list of reserved global variables and a 
list of namespaces in which corresponding game modules should be developed. The following 
subsections show some examples. 

16.1.4.1 Reserved Namespaces 
The following shows an example of reserved namespaces for host API in ParaEngine. The 

host API exposed by ParaEngine is a group of API to construct 2D and 3D content. 

 

Table Name Description 

ParaCamera The camera controller. 

ParaScene ParaScene namespace contains a list of HAPI functions to create and modify 
scene objects in ParaEngine 

ParaAsset ParaAsset namespace contains a list of HAPI functions to manage 
resources(asset) used in game world composing, such as 3d models, textures, 
animations, sound, etc. 

ParaUI ParaUI namespace contains a list of HAPI functions to create user interface 
controls, such as windows, buttons, as well as event triggers. 

ParaMisc Contains miscellaneous functions. 

NPL Neural Parallel Language foundation interface is in this namespace. 

16.1.4.2 Reserved Classes 
The following are some reserved data types or class objects in NPL. 

Object Name Description 

ParaObject It is represent a scene object. 

ParaCharacter It is represent a character object. 

ParaAssetObject It represents an assert entity 

ParaUIObject It represents a GUI object 

16.1.4.3 Reserved Variables 
The following are some reserved data types or class objects in NPL. 
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Variable Name Description 

sensor_name In an event handler, this variable contains the name of the callee. 

self Equivalent to this pointer in C++.  

mouse_button In a mouse event handler, it is mouse button that triggers the mouse. 

mouse_x  In a mouse event handler, it is mouse x position.  

mouse_y  In a mouse event handler, it is mouse y position.  

keyboard_key In a key event handler, it contains a list of key strokes. 

keyboard_character In a key event handler, it contains a string of readable characters. 

 

16.1.5 Using Directory and Domain Name 
How can a script file be found and referenced either by a script writer or by another script? 

The answer is directory path plus script file name. Indeed, directory is the most intuitive and 
convenient way to organize script files, especially when there are thousands of them. In NPL 
scripting system, we allow a domain name and some decorator symbols to optionally precede 
the directory path when specifying a script file. This gives us more flexibility when 
referencing script files from both local and remote NPL runtimes. Domain name together with 
decorator symbols can be used to specify the runtime environment of script files. In NPL, 
they are mainly used in networked programming environment. For scripting on the local 
computer, directory path alone is sufficient. We will cover the details of network 
programming using NPL in the next volume of the book.  

The following shows how a script function NPL.load() is used to load another script file.  

NPL. load (const char *  filePath,  bool  bReload=false) 

Load a new glia file (in the local environment) without running it. If the glia file is already 
loaded, it will not be loaded again. IMPORTANT: unlike other activation functions, this is 
something similar to "include" in C programming, the function is loaded where it is and 
returned to the original caller upon finish. 

Parameters: 

 filePath:  the local file path   

 bReload:  if true, the file will be reloaded even if it is already loaded. Otherwise, the file 
will only be loaded if it is not loaded yet.  

Returns: 

Return the GliaFile reference. 

Examples: 

NPL.load(“(gl)myworld/npc/creature0.lua”, false); 
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16.1.6 Script File Activation Mechanism 
This part can be optional in a scripting system. However, it is a very important component 

in NPL scripting system and is used extensively both for client side and distributed 
programming. So we will briefly introduce it anyway. 

Script file is a very important unit of execution in NPL scripting system, and we allow each 
script file to optionally provide an activation function. One can think of it as the main() 
function in C/C++ application programs; yet it may be called many times and also exits very 
fast. To define an activation function in a script file, we use the NPL.this() command. It can 
take any previously defined script functions as its input. See the following declaration. 

NPL. this (const functor funcActivate) 

Associate a user defined function as the activation function of this file. Add the current file 
name to the __activate table. Create the activate table, if it does not exist. 

Parameters: 

funcActivate: the function pointer to the activation function. It can either be local or global.

After registration, we can call the file’s acvation function by simply providing the file path, 
where the NPL.activate() command is used. See below. 

NPL.activate (const char * sNeuronFile, const char * code = NULL ) 

Activate the specified file. It can either be local or using the default or specified DNS. All 
these information is extracted from the sNeuronFile parameters. 

Parameters: 

 sNeuronFile:  Neuron File name for this neuron file. It may contain activation type, 
namespace or DNS server information. They should be specified in the following format:
[(g|gl|l)] [ namespace : ] relative_path [ @ DNSServerName ]  

//… many documentation ignored 

code: It is a chunk of authorized code that will be executed in the destination file before its 
activation is called. This code usually set the values of the destination’s global variables. 

A script code which contains an activation function may look like this.  

File name: SampleScript.lua 



 

 267 

local function activate() 

if (state == nil) then --state is a global variable 

local playname = “abc”; 

-- activate another script on remote machine. 

NPL.activate("ABC: /pol_intro.lua", "state=nil;"); 

-- activate another script on local machine. 

NPL.activate(“(gl)polintro.lua”,””); 

else  

… … 

end 

end 

state={}; -- a global variable (table), usually for passing and share states among NPL files. 

NPL.this (activate); --tell NPL which function is used as the activation function of this file. 

 

16.2 Architecture and Code 
If you are extending your scripting system over Lua, then there should be no problem on 

architecture issues. All you need is some code to register host API functions to the Lua 
runtime. Hence we combined the architecture and code to the same section in this chapter.  

We will illustrate how to export class attributes using static member functions in this 
section.  

16.2.1 Attribute Field 
The following are structures to store a single attribute.  
 /** a list of all attribute type*/ 
 enum ATTRIBUTE_FIELDTYPE 
 { 
  // get(), set() 
  FieldType_void,  
  // get(int*) set(int) 
  FieldType_Int,  
  // get(bool*) set(bool) 
  FieldType_Bool, 
  // get(float*) set(float) 
  FieldType_Float, 
  // get(float*,float* ) set(float, float) 
  FieldType_Float_Float, 
  // get(float*,float*,float*) set(float, float, float) 
  FieldType_Float_Float_Float, 
  // get(int*) set(int) 
  FieldType_Enum, 
  // get(double*) set(double) 
  FieldType_Double, 
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  // get(D3DXVECTOR2*) set(D3DXVECTOR2) 
  FieldType_Vector2, 
  // get(D3DXVECTOR3*) set(D3DXVECTOR3) 
  FieldType_Vector3, 
  // get(D3DXVECTOR4*) set(D3DXVECTOR4) 
  FieldType_Vector4, 
  // get(const char**) set(const char*) 
  FieldType_String, 
  FieldType_Deprecated = 0xffffffff 
 }; 
 /** for a single attribute field */ 
 class CAttributeField 
 { 
 public: 
  CAttributeField(); 
  ~CAttributeField(); 
 public: 
  union any_offset{ 
   void* ptr_fun; 
   int offset_data; 
  }; 
  any_offset m_offsetSetFunc; 
  any_offset m_offsetGetFunc; 
 
  /** field name: e.g. "base.position" */ 
  string  m_sFieldname; 
  /** see ATTRIBUTE_FIELDTYPE */ 
  DWORD  m_type;  
 
  /** additional schematics for describing the display format of the data. Different attribute type have 
different schematics. 
  @see GetSimpleSchema() */ 
  string  m_sSchematics; 
  /** a help string.*/ 
  string  m_sHelpString; 
 public: 
  /** 
  * get the field type as string 
  */ 
  const char* GetTypeAsString(); 
 
  inline HRESULT Call(void* obj) 
  { 
   if(m_offsetSetFunc.ptr_fun!=0) 
    return ((HRESULT (*)(void* obj))m_offsetSetFunc.ptr_fun)(obj); 
   else if(m_offsetGetFunc.ptr_fun!=0) 
    return ((HRESULT (*)(void* obj))m_offsetSetFunc.ptr_fun)(obj); 
   else 
    return E_FAIL; 
  }; 
  template <class datatype> 
  inline HRESULT Set(void* obj, datatype p1) 
  { 
   if(m_offsetSetFunc.ptr_fun!=0) 
    return ((HRESULT (*)(void* obj, datatype p1))m_offsetSetFunc.ptr_fun)(obj, p1); 
   else 
    return E_FAIL; 
  }; 
  template <class datatype> 
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  inline HRESULT Get(void* obj, datatype* p1) 
  { 
   if(m_offsetGetFunc.ptr_fun!=0) 
    return ((HRESULT (*)(void* obj, datatype* p1))m_offsetGetFunc.ptr_fun)(obj, p1); 
   else 
    return E_FAIL; 
  }; 
// … many other set/get function templates ignored.  
 public: 
  enum SIMPLE_SCHEMA  { 
   SCHEMA_RGB = 0,  
   SCHEMA_FILE, 
   SCHEMA_SCRIPT, 
   SCHEMA_INTEGER, 
  }; 
  static const char* GetSimpleSchema(SIMPLE_SCHEMA schema); 
  static const char* GetSimpleSchemaOfRGB(){return GetSimpleSchema(SCHEMA_RGB);}; 
  static const char* GetSimpleSchemaOfFile(){return GetSimpleSchema(SCHEMA_FILE);}; 
  static const char* GetSimpleSchemaOfScript(){return GetSimpleSchema(SCHEMA_SCRIPT);}; 
  static const char* GetSimpleSchemaOfInt(int nMin, int nMax); 
  static const char* GetSimpleSchemaOfFloat(float nMin, float nMax); 
 
  /** 
  * parse the schema type from the schema string. 
  */ 
  const char* GetSchematicsType(); 
   
  /** 
  * parse the schema min max value from the schema string. 
  * @return true if found min max. 
  */ 
  bool CAttributeField::GetSchematicsMinMax(float& fMin, float& fMax); 
 }; 

16.2.2 Attribute Class 
This is the attribute object returned when querying a class instance for class type information.  
 /** an attribute class is a collection of attribute fields. */ 
 class CAttributeClass 
 { 
 public: 
  CAttributeClass(int nClassID, const char* sClassName, const char* sClassDescription); 
  ~CAttributeClass(){} 
  enum Field_Order 
  { 
   Sort_ByName, 
   Sort_ByCategory, 
   Sort_ByInstallOrder, 
  }; 
 public: 
  /** add a new field. 
  @param sFieldname: field name 
  @param Type: the field type. it may be one of the ATTRIBUTE_FIELDTYPE. 
  @param offsetSetFunc: must be __stdcall function pointer or NULL. The function prototype should 
match that of the Type. 
  @param offsetGetFunc: must be __stdcall function pointer or NULL. The function prototype should 
match that of the Type. 
  @param sSchematics: a string or NULL. The string pattern should match that of the Type. 
  @param sHelpString: a help string or NULL.  
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  @param bOverride: true to override existing field if any. This is usually set to true, so that inherited 
class can override the fields installed previously by the base class.  
  */ 
  void AddField(const char*  sFieldname,DWORD Type, void* offsetSetFunc,void* offsetGetFunc, 
const char* sSchematics, const char* sHelpString,bool bOverride); 
  /** use of deprecated field takes no effect and will output warning in the log. */ 
  void AddField_Deprecated(const char *fieldName,bool bOverride=true); 
  /** remove a field, return true if moved. false if field not found. */ 
  bool RemoveField(const char* sFieldname); 
  void RemoveAllFields(); 
 
  /** class ID */ 
  int  GetClassID() const; 
  /** class name */ 
  const char* GetClassName() const; 
  /** class description */ 
  const char* GetClassDescription() const; 
 
  /** Set which order fields are saved. */ 
  void SetOrder(Field_Order order); 
  /** get which order fields are saved. */ 
  Field_Order GetOrder(); 
 
  /** get the total number of field. */ 
  int GetFieldNum(); 
  /** get field at the specified index. NULL will be returned if index is out of range. */ 
  CAttributeField* GetField(int nIndex); 
 
  /** 
  * get field index of a given field name. -1 will be returned if name not found.  
  * @param sFieldname  
  * @return  
  */ 
  int GetFieldIndex(const char*  sFieldname); 
 
  /** return NULL, if the field does not exists */ 
  CAttributeField* GetField(const char*  sFieldname); 
 
 protected: 
  int m_nClassID; 
  const char* m_sClassName; 
  const char* m_sClassDescription; 
  vector<CAttributeField> m_attributes; 
  Field_Order m_nCurrentOrder; 
 private: 
  /** insert a new field. return true if succeeded. 
  @param bOverride: true to override existing field if any. This is usually set to true, so that inherited 
class can  
  override the fields installed previously by the base class.  
  */ 
  bool InsertField(CAttributeField& item, bool bOverride); 
 }; 

16.2.3 Attribute Field Interface 
Class that supports attribute query needs to be derived from the IAttributeField base class. 
/** A common interface for all classes implementing IAttributeFields 
 By implementing this class's virtual functions, it enables a class to easily expose attributes  
 to the NPL scripting interface. All standard attribute types are supported by the property dialog UI, 
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 which  makes displaying and editing object attributes an automatic process. This class has no data 
 members, hence  there are no space penalties for implementing this class. The attribute information 
 for each class is kept centrally in a global table.  
 most objects in ParaEngine implement this class, such as CBaseObject, etc. 
 The following virtual functions must be implemented:  
  GetAttributeClassID(), GetAttributeClassName(), InstallFields()  
*/ 
 class IAttributeFields 
 { 
 public: 
  IAttributeFields(void); 
  ~IAttributeFields(void); 
 
 public: 
  ////////////////////////////////////////////////////////////////////////// 
  // implementation of IAttributeFields 
   
  /** attribute class ID should be identical, unless one knows how overriding rules work.*/ 
  virtual int GetAttributeClassID(){return ATTRIBUTE_CLASSID_IAttributeFields;} 
  /** a static string, describing the attribute class object's name */ 
  virtual const char* GetAttributeClassName(){static const char name[] = "Unknown"; return name;} 
  /** a static string, describing the attribute class object */ 
  virtual const char* GetAttributeClassDescription(){static const char desc[] = ""; return desc;} 
  /** this class should be implemented if one wants to add new attribute. This function is always 
called internally.*/ 
  virtual int InstallFields(CAttributeClass* pClass, bool bOverride); 
   
  ////////////////////////////////////////////////////////////////////////// 
  // 
  // implementation of the following virtual functions are optional 
  // 
  ////////////////////////////////////////////////////////////////////////// 
  /** whether some of the fields are modified.It is up to the implementation class to provide this 
functionality if necessary. */ 
  virtual bool IsModified(){return false;}; 
  /** set whether any field has been modified. */ 
  virtual void SetModified(bool bModified){}; 
 
  /** validate all fields and return true if validation passed. */ 
  virtual bool ValidateFields(){return true;}; 
  /** get the recent validation message due to the most recent call to ValidateFields() */ 
  virtual string GetValidationMessage(){return "";}; 
 
  /** 
  * Reset the field to its initial or default value.  
  * @param nFieldID : field ID 
  * @return true if value is set; false if value not set.  
  */ 
  virtual bool ResetField(int nFieldID){return false;}; 
   
  /** 
  * Invoke an (external) editor for a given field. This is usually for NPL script field 
  * @param nFieldID : field ID 
  * @param sParameters : the parameter passed to the editor 
  * @return true if editor is invoked, false if failed or field has no editor.  
  */ 
  virtual bool InvokeEditor(int nFieldID, const string& sParameters){return false;}; 
 public: 
  /** get the main attribute class object. */ 
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  CAttributeClass* GetAttributeClass(); 
 
  static HRESULT GetAttributeClassID_s(IAttributeFields* cls, int* p1) {*p1 = cls-
>GetAttributeClassID(); return S_OK;} 
  static HRESULT GetAttributeClassName_s(IAttributeFields* cls, const char** p1) {*p1 = cls-
>GetAttributeClassName();return S_OK;} 
   
  /** 
  * Open a given file with the default registered editor in the game engine.  
  * @param sFileName: file name to be opened by the default editor. 
  * @param bWaitOnReturn: if false, the function returns immediately; otherwise it will wait for the 
editor to return.  
  * @return true if opened.  
  */ 
  static bool OpenWithDefaultEditor( const char* sFilename, bool bWaitOnReturn = false); 
 
 private: 
  /** initialize fields */ 
  void Init(); 
 }; 

16.2.4 Attribute Class Script Wrapper 
This is the script wrapper of the CAttributeClass.  
 /** 
 * @ingroup ParaGlobal 
 * it represents an attribute object associated with an object.  
 * Call ParaObject::GetAttributeObject() or ParaObject::GetAttributeObject() to get an instance of this 
object.  
 e.g. In NPL, one can write 
  local att = player:GetAttributeObject(); 
  local bGloble = att:GetField("global", true); 
  local facing = att:GetField("facing", 0); 
  att:SetField("facing", facing+3.14); 
  local pos = att:GetField("position", {0,0,0}); 
  pos[1] = pos[1]+100;pos[2] = 0;pos[3] = 10; 
  att:SetField("position", pos); 
  att:PrintObject("test.txt"); 
 */ 
 struct ParaAttributeObject 
 { 
 public: 
  IAttributeFields * m_pAttribute; 
  CAttributeClass* m_pAttClass; 
  /** 
  * return true, if this object is the same as the given object. 
  */ 
  bool equals(const ParaAttributeObject obj) const; 
   
  bool IsValid() const; 
  int  GetClassID() const; 
  const char* GetClassName() const; 
  const char* GetClassDescription() const; 
 
  void SetOrder(int order); 
  int GetOrder(); 
 
  int GetFieldNum(); 
  const char* GetFieldName(int nIndex); 
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  int GetFieldIndex(const char*  sFieldname); 
  const char* GetFieldType(int nIndex); 
  bool IsFieldReadOnly(int nIndex); 
  const char* GetFieldSchematics(int nIndex); 
  const char* GetSchematicsType(int nIndex); 
  void GetSchematicsMinMax(int nIndex, float& fMin, float& fMax); 
  void GetField(const char*  sFieldname, object& output); 
  void PrintObject(const char* file); 
  bool ResetField(int nFieldID); 
  bool InvokeEditor(int nFieldID, const string& sParameters); 
// … comments and some functions are ignored 
 }; 

16.2.5 Script Examples 
One can visit our website at http://www.paraengine.com and download our demos; there are 
hundreds of script files to study under the installation directory. In the Appendix of this Book, 
there are also some NPL code samples to study.  

16.3 Summary and Outlook 
In this chapter, we have discussed and shown several useful design paradigms in the scripting 
system of a computer game engine. We will end this chapter by an overview of the NPL 
scripting system which will be discussed in detail in the second volume of the book.  

16.3.1 NPL Feature Overview 
Neural Parallel Language (or NPL) is an extension programming language which separates 

code logics from its hardware network environment. It is a new programming standard 
designed to support (1) frequent code updates, (2) complex graphic user interface and human-
computer interactions, and (3) reconfigurable code deployment in a distributed network 
environment. Its extension interface and basic syntax is based on Lua, a popular light-
weighted extensible language. NPL offers good support for object-oriented programming, 
functional programming, data-driven programming, and most importantly, network-
transparent programming. 

 

Feature 1: Network-transparent programming  

“Network-transparent” means that the source code of NPL does not concern the topology 
of the actual networked hardware environment. NPL separates code logics from its hardware 
network environment. In other words, the same source code (files) can be deployed to run on 
one computer or a dozen of networked computers. The source files are still editable and 
configurable after a successful deployment, which means that one can continue apply changes 
to the source code or even splitting files to further deploy on more NPL runtimes.  

 

Feature 2: Native language support for distributed visualization  

Traditionally, distributed system has one or several mirrored visualization or graphic user 
interface (GUI) terminals. NPL proposes a new computing paradigm, which allows 
visualizations as well as user interactions to occur on any machine of the distributed system 

http://www.paraengine.com/
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concurrently. Each specialized view will be automatically computed using the same source 
code.  

 

Feature 3: Distributed namespace architecture support 

In NPL, script files can be logically organized in namespaces. Each NPL runtimes 
maintains a dynamic mapping from namespaces to physical address (IP address); hence by 
modifying this mapping, script files can have different physical configurations on the actual 
network hardware. However, name collision is inevitable for distributed systems. One reason 
is that there is no central boss directing all computers on the network; instead computers are 
either on their own or working in clusters. Another reason is that the same source code may 
be instanced (duplicated) thousands of times on a shared network (e.g. the Internet). NPL’s 
solution to the namespace mapping problem is that it maintains a dynamic mapping on a task 
basis. In other words, a namespace mapping is only valid for some task. Here, task means job 
done cooperatively by a small group of computers at certain time. Hence, by imposing a few 
simple rules for programmers, we can eliminate problems during namespace mapping. 

16.3.2 Summary and Outlook of NPL 
Scripting is the symbol of flexibility and has become ubiquitous in modern computer game 

engines. Scripting alone means two things: (1) script files are automatically distributed and 
logics written in a script can be easily modified; (2) script code may be generated by 
dedicated visual language and software tools. In a computer game, almost all kinds of static 
data and most dynamic logic have text-based presentations outside the hard core of its engine. 
The adoption of scripting technology makes level design or game world logic composing 
easier than ever. 

Data exchange on the Internet is also largely text-based. An entity on the Internet with or 
without computing capabilities automatically becomes a global resource and can be 
referenced by other resources. A great deal of web technologies and recommended standards 
have been recently proposed to make the web more and more meaningful, interactive and 
intelligent. As envisaged by web3d17, web service and ubiquitous computing research, etc, 
software applications in the future are highly distributed and cooperative. Computer games 
and other virtual reality applications are likely to become the most pervasive forces in pushing 
these web technologies into commercial uses. It is likely that one day the entire Internet 
would be inside one huge game world. However, two related issues must be resolved first, 
which are distributed computing and visualization. An extensible language system provides 
means and solutions to both of them. NPL is our proposal which comes with plenty of 
application demos and will bring more in the near future.  

 

                                                      
17 Web3D Consortium, http://www.web3d.org/  
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Chapter 17 File System 

As we have shown in the early chapter 3, a modern computer game may have tens of 
thousands of resource files, most of which are ready-only. Deploying so many uncompressed 
files can be both time and space consuming. Moreover, some games may need to keep 
different versions of the same resource files on a user’s computer, such as applying different 
UI themes or running the game before and after a resource patch. If you observe several 3D 
games’ installation directories, 80% chances are that you will find one or more very large 
game files. It has almost become a tradition that game resource files are compressed and 
archived in a few large resource files at release time.  

In this chapter, we will look into a typical game file system implementation. The content in 
this chapter is quite optional for a game engine. However, if you are at the stage of shipping 
demos or games, this is something worth implementing.  

17.1 Foundation 
During the game development, there is only one file system, which is the windows file 

system. Most game development team uses version control software, which only works with 
the windows file system. At game release time, all game resource files are in their final 
version; we can put them in one or several isolated virtual file systems. Each virtual file 
system is stored in a single archive file. Popular archive file formats are ZIP, RAR, 7-ZIP, etc. 
An archive file usually consists of a chunked array of compressed files and a central directory 
for fast indexing file addresses by their file names.  

The game engine usually maintains a list of mounted file systems. The beginning of the list 
is the windows file system. And the rest is the virtual file systems. The game engine provides 
API to mount and unmount virtual file systems dynamically at runtime. In most cases, virtual 
file systems are all mounted at the beginning of the game. When the game engine needs to 
open a file, it tries to open it by iterating through all file systems in the list until either the file 
is found or all file systems have been examined. This allows us to specify priorities when 
searching a game file. For example, we can first search in the windows file system; if the file 
is not found there, we continue to search in other virtual file systems, etc. Multiple versions of 
the same file can thus have the same file path but stored in different file systems. 

The most important interface of a virtual file system is to extract the uncompressed file data 
from the archive, given a file name. It is usually a two step procedure. In the first step, we 
search the file path string in the archive file’s central directory for the file address (byte offset 
from the beginning of the archive file). In the second step, we decompress the file and copy it 
to a memory block and return the memory file object to the caller. In most cases, virtual file 
systems only store read-only files such as textures, models, sounds, and some script files. 
Hence, file compression, deletion and insertion, which are usually time-consuming, only 
occur before production time.  
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17.2 Architecture 
In ParaEngine, there are three modules in the game file system. They are CFileManager, 
CArchive and CParaFile, which are shown in Figure 11.1.  

 

Figure 17.1 Game file system overview 

CFileManager is the main file manager. One can dynamically mount and unmount virtual 
file systems through this class. Its main interface is shown below. 
/** 
* This is the main file interface exposed by ParaEngine. 
* It is mainly used as a singleton class. 
*/ 
class CFileManager 
{ 
protected: 
 list <CArchive*> m_archivers; 
public: 
 /** add archive to manager */ 
 bool OpenArchive(const string&  path); 
 void CloseArchive(const string&  path); 
 
 CSearchResult* SearchFiles(const string& sRootPath, const string& sFilePattern, const string& 
sZipArchive, int nSubLevel=0, int nMaxFilesNum=50, int nFrom=0); 
 
 /** 
 * Check whether a given file exists on disk.  
 * @param filename: file name to check 
 */ 
 bool DoesFileExist(const char* filename); 
 
// …many functions are ignored 
}; 

CArchive is the base class to all virtual file systems. The most important virtual file 
implementation is CZipArchive, which is for accesing a ZIP format archive file. Below is the 
CArchive interface.  
 /** file archiver base class. */ 
 class CArchive 

File Manager 

CArchive 

CArchive 

CZipArchive 

CZipArchive 

File Object 

CArchive 

List 
Mount/unmount file system 

Read/Writ

Game Engine File system 

Windows file system 
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 { 
 public: 
  CArchive(void):m_archiveHandle(NULL), m_bOpened(false),m_nPriority(0){}; 
  virtual ~CArchive(void); 
  inline static DWORD TypeID() {return 0;}; 
  virtual DWORD GetType(){ return TypeID();}; 
 protected: 
  string  m_filename;  
  FileHandle m_archiveHandle; 
  bool  m_bOpened; 
  int   m_nPriority; 
 public: 
  const string& GetArchiveName() const; 
  /** open archive  
  * @param nPriority: the smaller the number, the higher the priority with regard to other archive  
  */ 
  virtual bool Open(const string& sArchiveName, int nPriority); 
 
  /** close archive */ 
  virtual void Close(){}; 
  /** 
  * Check whether a given file exists 
  * @param filename: file name to check 
  */ 
  virtual bool DoesFileExist(const string& filename)=0; 
   
  /** 
  * Open a file for immediate reading. 
  * call getBuffer() to retrieval the data 
  * @param filename: the file name to open 
  * @param handle to the opened file. 
  * @return : true if succeeded. 
  */ 
  virtual bool OpenFile(const char* filename, FileHandle& handle) = 0; 
 
  /** get file size. */ 
  virtual DWORD GetFileSize(FileHandle& handle) = 0; 
 
  /** read file. */ 
  virtual bool ReadFile(FileHandle& handle,LPVOID lpBuffer,DWORD 
nNumberOfBytesToRead,LPDWORD lpNumberOfBytesRead) = 0; 
   
  virtual bool WriteFile(FileHandle& handle,LPCVOID lpBuffer,DWORD 
nNumberOfBytesToWrite,LPDWORD lpNumberOfBytesWritten){return false;}; 
   
  /** close file. */ 
  virtual bool CloseFile(FileHandle& hFile) = 0; 
   
  /** create a new file for writing 
  * @param bAutoMakeFilePath: if true, the file path will be created, if not exists 
  */ 
  virtual bool CreateNewFile(const char* filename, FileHandle& handle, bool bAutoMakeFilePath = 
true){return false;}; 
 }; 

 

The file object or CParaFile is an all-in-one class for file access, which is used at other 
places of the game engine. A CParaFile object may represent a disk file, a resource file, a 
memory file read from a virtual file system, or a newly created disk file, etc. It provides open 
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and close file functions, read and write file functions, and a great deal of other helper 
functions for extracting binary or formatted data from the file.  

17.3 Code 
The most difficult implementation code of a game file system is directory or index building 

and file decompression. Both of them are part of the CArchive class implementation. We will 
only take a look at the most commonly used virtual file archive format, the ZIP format. For 
zip files, there is a widely used single file compression and decompression library called ZLib, 
which can be downloaded for free from the web. We guess that over 90% games use this lib 
for file decompression. Please read the ZLib header file for its usage, basically it is just one 
function for compression and the other for decompression.  

However, before we can decompress a file, we must first locate the compressed file inside 
the ZIP file archive. Zip file is a chunked file format, whose specification can be found on the 
web.  Figure 17.2 shows the overview of a Zip file format.  

  

Figure 17.2 Zip archive format overview 

It is common for a zip file to contain over 10,000 files with a total size of several hundred 
MB. It is not efficient to traverse the file from the beginning to build the file directory. Instead 
we will seek to the end of zip file, locate the central directory by its signature and build the 
file directory from there.  

Since we are not dealing with a super large file system, we can read the entire directory to 
memory at once and save them in an array sorted by file path names. It takes about 0.1 second 
to read and build file directory for a ZIP achive containing 20,000 files on a typical 3 G Hz 
PC. So it does not take long to load the directories of several large ZIP achives to memory at 
the game loading time.  

The following are code snippet to build file directory from a ZIP archive. 

Local header1

File data 1 

N Chunks 

Local header 2

File data 2 

… 

Local header N

File data N 

 
Central directory

File header 1 
File header 2 

… 

File header N 
Signature 
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bool CZipArchive::ReadEntries() 
{ 
 char tmp[1024]; 
 long locatedCentralDirOffset = LocateBlockWithSignature(ZIP_CONST_ENDSIG, m_pFile-
>getSize(), sizeof(ZIP_EndOfCentralDirectory), 0x4); 
 if (locatedCentralDirOffset < 0) { 
  long locatedCentralDirOffset = LocateBlockWithSignature(ZIP_CONST_ENDSIG, m_pFile-
>getSize(), sizeof(ZIP_EndOfCentralDirectory), 0xffff); 
  if (locatedCentralDirOffset < 0) 
   return false; 
 } 
 
 ZIP_EndOfCentralDirectory EndOfCentralDir; 
 m_pFile->read(&EndOfCentralDir, sizeof(ZIP_EndOfCentralDirectory)); 
  
 if(EndOfCentralDir.commentSize>0) 
 { 
  SAFE_DELETE_ARRAY(m_zipComment); 
  m_zipComment = new char[EndOfCentralDir.commentSize];  
  m_pFile->read(m_zipComment, EndOfCentralDir.commentSize);  
 } 
 int offsetOfFirstEntry = 0; 
 if (EndOfCentralDir.offsetOfCentralDir < locatedCentralDirOffset - (4 + 
EndOfCentralDir.centralDirSize)) { 
  offsetOfFirstEntry = locatedCentralDirOffset - (4 + EndOfCentralDir.centralDirSize + 
EndOfCentralDir.offsetOfCentralDir); 
  if (offsetOfFirstEntry <= 0) { 
   return false;//throw new ZipException("Invalid SFX file"); 
  } 
 } 
 
 m_pFile->seek(offsetOfFirstEntry + EndOfCentralDir.offsetOfCentralDir, false); 
 
 IReadFile* pReader = NULL; 
 
#ifdef ENABLE_INDEX_CACHE 
 CMemReadFile memfile(m_pFile, locatedCentralDirOffset - m_pFile->getPos()); 
 pReader = &memfile; 
#else 
 pReader = m_pFile; 
#endif 
 
 int nEntryNum = EndOfCentralDir.entriesForThisDisk; 
 m_FileList.set_used(nEntryNum); 
 m_FileList.set_sorted(false); 
 SAFE_DELETE_ARRAY(m_pEntries); 
 m_pEntries = new SZipFileEntry[nEntryNum]; 
 for (int i = 0; i < nEntryNum; ++i)  
 { 
  ZIP_CentralDirectory CentralDir; 
  pReader->read(&CentralDir, sizeof(ZIP_CentralDirectory)); 
  if(CentralDir.Sig!=ZIP_CONST_CENSIG) 
  { 
   return false; // throw new ZipException("Wrong Central Directory signature"); 
  } 
 
  m_FileList[i].m_pEntry = &m_pEntries[i]; 
  if(m_FileList[i].m_pEntry == 0) 
   return false; 
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  SZipFileEntry& entry = *(m_FileList[i].m_pEntry); 
   
  // read filename 
  entry.zipFileName.reserve(CentralDir.NameSize+2); 
  pReader->read(tmp, CentralDir.NameSize); 
  tmp[CentralDir.NameSize] = 0x0; 
  entry.zipFileName = tmp; 
  if (m_bIgnoreCase) 
   make_lower(entry.zipFileName); 
 
  entry.CompressionMethod = CentralDir.CompressionMethod; 
  entry.UncompressedSize = CentralDir.UnPackSize; 
  entry.CompressedSize = CentralDir.PackSize; 
 
  if (CentralDir.ExtraSize > 0) { 
   pReader->seek(CentralDir.ExtraSize, true); 
  } 
 
  if (CentralDir.CommentSize > 0) { 
   pReader->seek(CentralDir.CommentSize, true); 
  } 
  // calculate data pos offset. 
  int nDataPos = CentralDir.LocalHeaderOffset + sizeof(SZIPFileHeader) + CentralDir.NameSize; 
   
  entry.fileDataPosition = nDataPos; 
 } 
 return true; 
} 

17.4 Summary and Outlook 
Many game engine modules need to access files. It is good practice to provide a unified file 

access interface throughout the game engine. In this chapter, we have illustrated a typical file 
system in a game engine.  

A number of functionalities can be realized by extending the game file system, such as 
XML data serialization, file patch system, HTTP and FTP file download, etc.  
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Chapter 18 Frame Rate Control 

Computer game engine is a real-time visualization and simulation application. However, 
the computation complexity of each frame in a computer game engine is not steady. Time 
management (including time synchronization and frame rate control) is the backbone system 
that feedbacks on a number of game engine modules to provide physically correct, interactive, 
stable and consistent graphics output.  

In this chapter, we will look at timing issues in a game engine. This chapter could be useful 
to developers who have already built a fairly complete game engine. This is why we put it at 
the end of the book. 

18.1 Foundation 
Timing or frame rate in game engines is both unpredictable and intertwined for a number of 

reasons. For example: resource files are dynamically loaded from the file system; some scene 
entities are animated independently, whereas others may form master-slave animation 
relationships; simulation and graphics routines are running at unstable (frame) rate; some of 
the game scene entities are updated at variable-length intervals from multiple network servers; 
and some need to swap between several LOD (level-of-detail) configurations to average the 
amount of computations in a single time step. In spite of all these things, a game engine must 
be able to produce a stable rendering frame rate, which best conveys the game state changes 
to the user. For example, a physically correct animation under low frame rate (loosing many 
rendering frames in the middle) is sometimes less satisfactory than time-scaled animation, 
where continuities in character motions are preferred. A solution to the problem is to use 
statistical or predictive measures to calculate the length of the next time step for different 
time-driven game processes and objects. In other words, time management architecture (such 
as the one proposed in this chapter) is worth to be integrated to a computer game engine.  

It is also important to realize that timing in computer games is different from that of the 
reality and other simulation systems. A computer game prefers (1) interactivity or real-time 
game object manipulation (2) consistency (e.g. consistent game states for different clients) (3) 
stable frame rate (this is different from interactive or average frame rate). For technical 
reasons, it is unrealistic to synchronize all clocks in the networked gaming environment to 
one universal time. Even if we are dealing with one game world on a standalone computer, it 
is still not possible to achieve both smoothness and consistency for all time related events in 
the game. Fortunately, by rearranging frame time, we can still satisfy the above game play 
preferences, while making good compromises with the less important ones, such as physical 
correctness. 

18.1.1 Overview 
Time management has been studied in a number of places of a computer game engine, such 

as (1) variable frame length media encoding and transmission (2) time synchronization for 
distributed simulation (3) game state transmission in game servers (4) LOD based interactive 
frame rate control for complex 3D environments. However, there have been relatively few 
literatures on a general architecture for time synchronization and frame rate control, which is 
immediately applicable to an actual computer game engine. In a typical game engine, 
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modules that need time management support include: rendering engine, animation controller, 
I/O, camera controller, physics engine, network engine (handling time delay and misordering 
from multiple servers), AI (path-finding, etc), script system, in-game video capturing system 
and various dynamic scene optimization processes such as ROAM based terrain generation, 
shadow generation and other LOD based scene entities. In addition, in order to achieve 
physically correct and smooth game play, frame rate of these modules must be synchronized, 
and in some cases, rearranged according to some predefined constraints. 

In the game development forums, many questions have been asked concerning jerky frame 
rates, jumpy characters and inaccurate physics. In fact, these phenomenons are caused by a 
number of coordinating modules in the game engine and cannot be easily solved by a simple 
modification. 

In the following sections, we will identify frame rate related problems in a game engine.  

18.1.2 Decoupling Graphics and Computation 
Several visualization environments have been developed which synchronize their 

computation and display cycles. These virtual reality systems separate the graphics and 
computation processes, usually by distributing their functions among several platforms or 
system threads (multi-threading).  

When the computation and graphics are decoupled in an unsteady visualization 
environment, new complications arise. These involve making sure that simultaneous 
phenomena in the simulation are displayed as simultaneous phenomena in the graphics, and 
ensuring that the time flow of computation process is correctly reflected in the time flow of 
the displayed visualizations (although this may not need to be strictly followed in some game 
context). All of this should happen without introducing delays into the system, e.g. without 
causing the graphic process to wait for the computation to complete. The situation is further 
complicated if the system allows the user to slow, accelarate or reverse the apparent flow of 
time (without slowing or stopping the graphics process), while still allowing direct 
manipulation and exploration at real time. 

However, decoupling graphics and computation is a way to explore parallelism in 
computing resources (e.g. CPUs and GPUs), but it is not a final solution to time management 
problems in game engines. In fact, in some cases, it could make the situation worse; not only 
because it has to deal with complex issues such as thread-safety (data synchronization), but 
also because we may lose precise control over the execution processes. E.g. we have to rely 
completely on the operating system to allocate time stamps to processes. Time stamp 
management scheme supported by current operating system is limited to only a few models 
(such as associating some priority values to running processes). In game engines, however, 
we need to create more complex time dependencies between processes. Moreover, data may 
originate from and feed to processes running on different places via unpredictable media (i.e. 
the Internet). Hence, our proposed architecture does not rely on software or hardware 
parallelism to solve the frame rate problem. 

18.1.3 I/O 
The timing module for IO mainly deals with when and how often the engine should process 

user commands from input devices. These may include text input, button clicking, camera 
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control and scene object manipulation, etc. Text input should be real-time; button clicking 
should subject to rendering rate. The tricky part is usually camera control and object 
manipulation. Unsmooth camera movement in 3D games will greatly undermine the gaming 
experience, especially when camera is snapped to the height and norm of the terrain below it. 
Direct manipulation techniques allow players to move a scene object to a desired location and 
view that visualization after a short delay. While the delay between a user control motion and 
the display of a resulting visualization is best kept less than 0.2 seconds, experience has 
shown that delays in the display of the visualization of up to 0.5 seconds for the visualization 
are tolerable in a direct manipulation context. Our experiment shows that camera module 
reaction rate is best set to constant (i.e. independent of other frame rates). 

18.1.4 Frame Rate and Level of Detail 
The largest number of related work lies in Frame rate and Level of detail (LOD). The idea 

of LOD techniques is that we can maintain stable frame rate by maintaining a stable scene 
complexity or the number of rendered triangles per frame.  

In many situations, a frame rate, lower than 30 fps, is also acceptable by users as long as it 
is stable. However, a sudden drop in frame rate is rather annoying since it distracts the user 
from the task being performed. To achieve constant frame rate, scene complexity must be 
adjusted appropriately for each frame. In indoor games (where the level geometry may be 
organized by BSP nodes or PVS), the camera is usually inside a closed room. Hence, the 
average scene complexity can be controlled fairly easily by level designers. The uncontrolled 
part is mobile characters, which are usually rendered in relatively high poly models in modern 
games. Yet, scene complexity can still be controlled by limiting the number of high-poly 
characters in their movable region, so that the worst case polygon counts of any screen shot 
can stay below a predefined value. In multiplayer Internet games, however, most character 
activities are performed in outdoor scenery which is often broader (having much longer line-
of-sight) than indoor games. Moreover, most game characters are human avatars. It is likely 
that player may, now and then, pass through places where the computer cannot afford to 
sustain a constant real-time frame rate (e.g. 30 FPS). The proposed frame rate controller 
architecture can ease such situations, by producing smooth animations even under low 
rendering frame rate. 

18.1.5 Network servers 
Another well study area concerning time management is distributed game servers. In peer-

to-peer architecture or distributed client/server architecture, each node may be a message 
sender or broadcaster and each may receive messages from other nodes simultaneously.  

In order for each node to have a consistent or fairly consistent view of the game state, there 
needs to be some mechanism to guarantee some global ordering of events. This can either be 
done by preventing misorderings outright (by waiting for all possible commands to arrive), or 
by having mechanisms in place to detect and correct misorderings. Even if visualization 
commands from the network can be ordered, game state updates on the receiving client still 
needs to be refined in terms of frame rate (time step) for smooth visualization. Another 
complication is that if a client is receiving commands from multiple servers, the time at which 
one command is executed in relation to others may lead to further ordering constraints.  
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The ordering problem for a single logical game server can usually be handled by designing 
new network protocols which inherently detects and corrects misorderings. However, flexible 
time control cannot be achieved solely through network protocols. For example, in case 
several logical clocks are used to totally order events from multiple game servers, the game 
engine must be able to synchronize these clocks and use them to compose a synthetic game 
scene. Moreover, clocks in game engines are not directly synchronized. For example, some 
clocks may tick faster, and some may rewind. Hence, time management in game development 
can be very chaotic if without proper management architecture. 

18.1.6 Physics Engine 
The last category of related works that will be discussed is timing in physics engine, which 

is also the trickiest part of all.  

The current time in the physics engine is usually called simulation time. Each frame, we 
advance simulation time in one or several steps until it reaches the current rendering frame 
time (However, we will explain later that this is not always necessary for character animation 
under low frame rate). Choosing when in the game loop to advance simulation and by how 
much can greatly affect rendering parallelism. However, simulation time is not completely 
dependent on rendering frame time. In case the simulation is not processing fast enough to 
catch up with the rendering time, we may need to freeze the rendering time and bring the 
simulation time up to the current frame time, and then unfreeze. Hence it is a bi-directional 
time dependency between these two time-driven systems. 

Integrating Key Framed Motion 

In game development, most game characters, complicated machines and some moving 
platforms may be hand-animated by talented artists. Unfortunately, hand animation is not 
obligated to obey the laws of physics and they have their own predefined reference of time. 

To synchronize the clocks in the physics engine, the rendering engine and the hundreds of 
hand-animated mesh objects, we need time management framework and some nonnegotiable 
rules. For example, we consider key framed motion to be nonnegotiable. A key framed sliding 
wall can push a character, but a character cannot push a key framed wall. Key framed objects 
participate only partially in the simulation; they are not moved by gravity, and other objects 
hitting them do not impart forces. They are moved only by key frame data. For this reason, 
the physics engine usually provides a callback function mechanism for key framed objects to 
update their physical properties at each simulation step. Call back function is a C++ solution 
to this paired action (i.e. the caller function has the same frame rate as the call back function). 
Yet, calculating physical parameters could be computationally expensive. E.g. in a skeletal 
animation system, if we want to get the position of one of its bones at a certain simulation 
time, we need to recalculate all the transforms from this bone to its root bone.  

18.2 Architecture 
In this section, we propose the Frame Rate Control (FRC) architecture and show how it can 

be integrated in a game engine. 



 

 285 

18.2.1 Definition of Frame Rate and Problem Formulation 
In the narrow sense, frame rate in computer graphics means the number of images rendered 
per second. However, the definition of frame rate used in this paper has a broader meaning. 
We define frame rate to be the activation rate of any game process. More formally, we define 
f(t)  {0,1}, where t is the time variable and f(t) is the frame time function. We associate a 
process in the game engine to a certain f(t) by the following rule: f(t) is 1, if and only if its 
associated process is being executed. The frame rate at time t is defined to be the number of 
times that the sign of f(t) changes from 0 to 1, during the interval (t-1,t].  

Let 
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points on t, where the value of f(t) changes from 1 to 0. Also we enforce 
that 1( )k k kk s e s +∀ < < . { , }k ke st t  is equivalent to f(t) for describing frame time function.  

With the above formulation, we can analyze and express the frame rate of a single function as 
well as the relations between multiple frame rate functions easily. Figure 18.1 shows the 
curves of three related frame rate functions: i, j and k. 

 

Figure 18.1 Sample curves of frame rate functions 

The curve of f(t) may be unpredictable in the following ways. 

- In some cases, the length of time when f(t) remains 1 is unpredictable (i.e. | - |k ke st t  is 
unknown), but we are able to control when and how often the f(t) changes from 0 to 1 
(i.e. kst can be controlled). The rendering frame rate is often of this type. 

- In other cases, we do not know when the value of f(t) will change from 0 to 1 (i.e. kst is 
unknown), but we have some knowledge about when f(t) will become 0 again (i.e. we 
know something about | - |k ke st t ). The network update rate is often of this type.  

- In the best cases, we know something about | - |k ke st t  and we can control kst . The physics 
simulation rate is often of this type.  

- In the worst cases, only statistical knowledge or a recent history is known about f(t). The 
video compression rate for real-time game movie recording and I/O event rate are often of 
this type (fortunately, they are also easy to deal with, since these frame rates are 
independent and do not need much synchronization with other modules.).  

Let {fn(tn)} be a set of frame time functions, which represent the frame time for different 
modules and objects in the game engine and game scene. The characteristics of f(t) and the 
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relationships between two curves fi(t) and fj(t) can be expressed in terms of constraints. Some 
simple and common constraints are given below, with their typical use cases. (More advanced 
constraints may be created.) 

1. | -  | MaxDiffTime, (MaxDiffTime 0)i jt t < ≥ . Two clocks i, j should not differentiate 
too much or must be strictly synchronized. The rendering frame rate and physics 
simulation rate may subject to this constraint. 

2. ( -  ) MaxFollowTime, (MaxFollowTime 0)i jt t < > . Clock(j) should follow another 
clock(i). The rendering and IO (user control such as camera movement) frame rate may 
subject to it.  

3. 1 1
, (( , ) ( , ) )k k l ls s s s

k l i i j jt t t t+ +∀ = ∅∩ . Two processes i, j cannot be executed 
asynchronously. Most local clocks are subject to this constraint. If we use single-
threaded programming, this will be automatically guaranteed.  

4. 1max{( )} MaxLagTimek ks st t −− <  . The worst cast frame rate should be higher than 
1/MaxLagTime. Physics simulation rate is subject to it for precise collision detection. 

5. 1 1(| 2 | MaxFirstOrderSpeed)k k ks s sk t t t+ −∀ + − < . There should be no abrupt changes in 
time steps between two consecutive frames. The rendering frame rate must subject to it 
or some other interpolation functions for smooth animation display. 

6. 1(( ) )k ks sk t t ConstIdealStep−∀ − = . Surprisingly, this constraint has been used most 
widely. Games running on specific hardware platform or with relatively steady scene 
complexity can use this constraint. Typical value for ConstIdealStep is 1/30fps, which 
assumes that the user’s computer must finish computing within this interval. In in-game 
video recording mode, almost all game clocks are set to this constraint.  

7. 1(( ) )k ks sk t t ConstIdealStep−∀ − <= . Some games prefer setting their rendering frame 
rate to this constraint, so that faster computers may render at a higher rate. Typical value 
for ConstIdealStep is 1/30fps; while at real time 1( )k ks st t −−  may be the monitor’s 
refresh rate.  

 

18.2.2 Integrating Frame Rate Control to the Game Engine 
There can be many ways to integrate frame rate control mechanism in a game engine and it is 
up to the engine designer’s preferences. We will propose here the current integration 
implementation in ParaEngine. 

In ParaEngine, we designed an interface class called FRC Controller and a set of its 
implementation classes, each of which is capable to manage a clock supporting some timing 
constraints. Instances of FRC Controller are created and managed in a global place (such as in 
a singleton class). A set of global functions (see Time Scheme Manager in Figure 18.2) are 
used to set the current frame rate management scheme in the game engine. Each function will 
configure the frame rate controller instances to some specific mode. For example, one such 
function may set all the FRC controllers for video capturing at a certain FPS; another function 
may set the FRC controllers so that game is paused but 2D GUI is active; yet a third function 
may set controllers so that the game is running normally with an ideal 30 FPS frame rate. 

Like in most computer game engines, a scene manager is used for efficient game object 
management. For each time-driven process and object in the scene, the game engine must 
know which FRC controllers it is associated with. One way to do it is to keep a handle or 



 

 287 

reference to the FRC controllers in every scene object. However, it is inefficient in terms of 
management and memory usage. A more efficient way to do this is to take advantage of the 
tree hierarchy in the scene manager and its transversal routines during rendering and 
simulation. This is done by creating a new type of dummy scene node called time node (see 
Figure 18.2), which contains the reference or handle to one or several FRC controller 
instances. Then they are inserted to the scene graph like any other scene nodes. Finally, the 
following rules are used to retrieve the appropriate FRC controllers for a given scene object: 

- The FRC controllers in a time node will be applied to all its child scene nodes recursively. 

- If there is any conflict among FRC controllers for the current scene node, settings in the 
nearest time node in the scene graph are adopted. 

Since frame rate controllers are managed as top-layer (global) objects in the engine (see 
Figure 18.2).  Any changes made to the FRC controllers will be immediately reflected in the 
next scene traversal cycle. Three global frame rate controllers are used: IO_TIMER, 
SIM_TIMER and RENDER_TIMER. These are the initial FRC controllers passed to 
processes in the game loop. As a process goes through the scene graph, the initial settings will 
be combined with or overridden by FRC controller settings contained in the time nodes. 

 

Figure 18.2 Integrating time control to the game engine 

 

18.3 Evaluation 
This section contains some use cases of the proposed framework. The combination of FRC 
controller settings can create many interesting time synchronization schemes, yet we are able 
to demonstrate just a few of them here.  
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18.3.1 Frame Rate Control in Video Capturing 
The video system in ParaEngine can create an AVI video while the user is playing the game. 
When high-resolution video capture mode (with codec) is on, the rendering frame rate may 
drop to well below 5 FPS. It's a huge impact, but fortunately it does not get run at production 
time. The number of frames it will produce depends on the video FPS settings, not the game 
FPS when the game is being recorded. 

Now a problem arises: how do we get a 25 FPS output video clip, while playing the game 
at 5FPS? In such cases, the time management scheme should be changed for the following 
modules: I/O, physics simulation, AI scripting and graphics rendering. Even though the game 
is running at very low frame rate, it should still be interactive to the user, generate script 
events, perform accurate collision detection, run environment simulation and play coordinated 
animations, etc, as if the game world is running precisely at 25 FPS. ParaEngine solves this 
problem by swapping between two sets of FRC controller schemes for clocks used by its 
engine modules. In normal game play mode, N-scheme is used; whereas during video 
capturing, C-scheme is used. See Table 18.1. In C-scheme, the simulation and the scripting 
system use the same constant-step frame rate controller as the rendering and I/O modules. The 
resulting output of C-scheme is that everything in the game world is slowed but still 
interactive.  

Table 18.1 Frame rate control schemes 

 N-scheme C-scheme 

ConstIdealFPS 30 or 60 20 or 25 

Rendering FRC_CONSTANT FRC_CONSTANT 

I/O FRC_CONSTANT FRC_CONSTANT 

Sim & scripting FRC_FIRSTORDER FRC_CONSTANT 

18.3.2 Coordinating Character Animations 
In computer game engine, a character’s animation is usually determined by the combination 

of its global animation and local animation. Global animation determines the position and 
orientation of the character in the scene, which is usually obtained from the simulation engine. 
The local animation usually comes from pre-recorded animation clips. In order for the 
combined motion of the character to be physically correct, the simulation time is usually 
strictly matched with the local animation time using constraint (1) in Section 3.1. However, 
this is not the best choice for biped animation with worst case rendering frame rate between 
10FPS and 30 FPS. Our experiment shows that setting simulation time to constraint (5) and 
the local animation time to constraint (6) will produce more satisfactory result. This 
configuration does not generate strictly correct motion, but it does produce smooth and 
convincing animation. The explanation is given below. Suppose a biped character is walking 
from point A to B at a given speed. Assume that the local “walk” animation of the biped takes 
10 frames at its original speed (i.e. it loops every 10 frames). Suppose that the simulation 
engine needs to advance 20 frames in order to move the biped from A to B at the biped’s 
original speed. Now consider two situations. In situation (i), 20 frames can be rendered 
between A and B. In situation (ii), only 10 frames can be rendered. With constraint (1), the 
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biped will move fairly smoothly under situation (i), but appears very jerky under situation (ii). 
This is because if the simulation and the local animation frame rates are strictly synchronized, 
the local animation might display frame 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 at its best; in the actual case, 
it could be 0, 1,2, 8,9, 1,2,3,7,9, both of which are missing half the frames and appears 
intolerable jumpy. However, with constraint (5) and (6) applied, the local animation frame 
displayed in situation (i) will be 0,1,2,3,4,5,6,7,8,9, 0,1,2,3,4,5,6,7,8,9, and under situation (ii), 
0,1,2,3,4,5,6,7,8,9, both of which play the intact local animation and look very smooth. The 
difference is that the biped will stride a bigger step in situation (ii). But experiment shows that 
users tend to misperceive it as correct but slowed animation. The same scheme can be used 
for coordinating biped animations in distributed game world. For example, if there is any lag 
in a biped’s position update from the network, the stride of the biped will be automatically 
increased, instead of playing a physically correct but jumpy animation. 

18.4 Summary and Outlook 
The main purpose of this chapter is to help readers identifying frame rate related issues in a 

game engine. We also propose the frame rate architecture in ParaEngine.  

Ad-hoc timing control, as frequently seen in released product, needs to be refined by their 
designers. In the long run, time management will become very important in distributed 
visualization and simulation of virtual environment, such as networked computer game 
worlds. 
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Chapter 19 Summary and Outlook of Game Engine 

After reading this book, we may get an overwhelming feeling about computer game engine: 
a computer game engine is a complicated engineering of virtually all fields of computer 
science in the most efficient ways. Applications created by game engine deliver the best 
multimedia content that a computer could possibly offer.  

19.1 Age of Middleware 
Although, a computer game engine embraces a large number of field technologies, they are 

not immediately applicable. In the old days, a game engine developer needs to recode a great 
deal of them in order to meet the performance requirement of game engine. Nowdays, 
common functional modules of a game engine are being specialized and commericialized. 
They can be small to medium modules, such as game physics, particle simulation, AI modules, 
network modules, scripting system, terrain engine, vegetation rendering; or they can be major 
components of game engine, such as the entire graphics system, world editing environment, 
client/server system, etc. These pieces of dedicated software are called middlewares. 
Sometimes, it is hard to distringuish them from the game engine itself, or the game engine 
itself may sometimes become a middleware.  

The extensive use of middleware also requires extensive knowledge of a game engine. 
Successful middleware users are usually those who have already implemented their own game 
engine, but want to shorten the game production time and increase product quality. 

On the other hand, innovative games usually require specialized game engines. No game 
engine today can accommodate all types of games. When the cost of customizing an existing 
game engine is too high, project manager needs to make the bold decision to rework major 
game engine modules to suit the need of the game.  

19.2 World Editing 
There are three types of world editing choices for game engine. They are described in the 
following sub sections. 

19.2.1 In-game Editing 
Most game engines provide some sort of in-game world editing application, which allows 

designers to lay-out level geometry, triggers and a variety of game objects dynamically. This 
is usually the case for games featuring extremely large territories, such as MMORPG games. 
ParaEngine supports this editing method natively.  

19.2.2 Customizing over Professional 3D Authoring Tools 
Optionally, a game engine may customize professional editing applications, such as 

3dsmax and maya, and make it an integrated world editing environment. This is usually the 
case for art intensive games such as standalone console RPG games. By the time of writing, 
ParaEngine only supports this type of world editing via 3dsmax.  
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19.2.3 Writing Special Tools for Game  
Most game projects do not implement their own game engine. Instead, they usually have a 

dedicated tool team which builds the world editing tools to the need of their specific games. 
One of the most demanding game types that require much work on game editor is perhaps the 
Real-Time Strategy (RTS) games. These specified world editing tools are usually made via 
API exposed by the game engine. Some game engine allows source code level access to the 
game engine; however, this is not the advised way to build world editing tools. Instead world 
editing tools are usually built via the game engine’s C/C++ API or API exposed through the 
game engine’s scripting interface. In ParaEngine, 90% of the major game engine 
functionalities, including the network and database logics, are exposed via the NPL scripting 
interface. This allows tool developers to use the scripting language to construct advanced 
world editing tools for their games.  

19.2.4 Outlook 
Unlike other super sophisticated computer software, we think that the near future of game 

editing environment will not be ruled by a few giants. Instead, game editing will continue to 
diversify for different people with different skills and objectives.  

The logics of games are endless, and so does the human computer interface of its editing 
environment.  

19.3 Next Generation Game Engine 
In the past and today, graphics is the most-talked-about feature for next generation game 

engine. We will continue to see more realistic scenes powered by tommorrow’s technology. 
We also believe that networking and artificial intelligence will play more important roles in a 
game engine. They are also the two aspects that ParaEngine aims to specialize in.  

We believe that computer game is the driving force which could bring the Internet to Web 
3D18.  

                                                      
18 Web3D Consortium, www.web3d.org  
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Appendix A: 
Code Optimization 

A game engine programmer always keeps one thing in its mind which is code optimization. 
There are high-level algorithms and code patterns which we covered in this book. However, 
when writing pieces of critical programming code, there are some basic techniques a 
programmer should know. Since there are already many good books on the topic, we will 
cover just some of them which will immediately boost your unoptimized code. They are 
freely listed below. 

Inline Functions 

Recognize frequently called functions that have small bodies; if you feel that inlining might 
boost performance, just do it. The most typical example of using inlining is on the math or 
physics functions. If you observe the DirectX extenstion library, you will find that most 
vector and matrix functions are inlined.  

Use Globals  

Here, globals do not just mean global parameters, but also any singleton object in the game 
engine. A game engine usually contains many singleton objects, such as scene manager, scene 
states, render device, current camera, current player, etc. Although it may be bad practice 
elsewhere, game engines almost never pass globals as parameters to functions. The main 
reason is on performance.  

Writing Simpler Code 

Do not pack many things in to a single line of C/C++ code. The compiler may fail to 
optimize it due to it. Modern compiler can automatically optimize our source code by 
applying a number tricks to the source code, such as inlining, changing code order or 
duplicating code to prevent frequent branching, etc.  

Branching 

Currently CPU runs lots of instructions in parallel. A branch instruction such as “if” will 
undermind parallism in the CPU, hence we should avoid the number of branch instructions in 
critical program code, and if it is truly unavoidable, we should try to increase the chance that 
a branch instruction passes. As a general rule, try to avoid using branching inside a loop, and 
put unlikely-to-execute code in the “else” part instead of “if” part.  

Precompute 

We can use fast sine and cosine functions which precompute values and retrieve them by 
indexing in to the table. Similarly, we can minimize the number of devision calls by 
precompute its inverse.  

Align data members 

When space is critical, some people tend to pack data members in to bytes or even bits. 
However, the computer accesses data most efficiently with the default 4 bytes alignment. In 
most cases, system memory is not quite a scarce resource as it appears. Comparing with the 
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size of model and texture files in memory; saving a few bytes in data structuring does not out-
weigh its costs of decreased member access speed.  

Profiling 

There are many good commercial profiling tools. DirectX SDK also comes with a GPU 
profiler called PIX. When developing ParaEngine, we wrote a handy code level profiler 
ourselves. A game engine is mainly a looped program where many modules are executed on a 
regular basis. Hence we usually use the code profiler to generate information such as min, 
max, average execution time, execution time deviations, etc. The following shows a segment 
of information generated by the code profiler in ParaEngine. 
<RebuildSceneState> 
Avg: 0.000128    Dev: 0.000000    Max: 0.001101    Min: 0.000127    Total Frames: 615 
 
<Render_Mesh> 
Avg: 0.000114    Dev: 0.000555    Max: 0.062597    Min: 0.000011    Total Frames: 615 
 
<Script FrameMove> 
Avg: 0.008639    Dev: 0.038664    Max: 3.039571    Min: 0.000015    Total Frames: 669 
 
<3D Scene Render> 
Avg: 0.006790    Dev: 0.007811    Max: 0.613430    Min: 0.004168    Total Frames: 615 
 
<Animate FrameMove> 
Avg: 0.000168    Dev: 0.000254    Max: 0.065232    Min: 0.000005    Total Frames: 669 
 
<present> 
Avg: 0.000561    Dev: 0.000132    Max: 0.024704    Min: 0.000179    Total Frames: 669 
 
<terrain_tessellation> 
Avg: 0.007236    Dev: 0.001256    Max: 0.010994    Min: 0.004663    Total Frames: 56 
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Appendix B: 
Da Vinci World 

The first object of the painter is to make a flat plane appear as a body in relief and projecting 
from that plane. 

-- Leonardo da Vinci (1452-1519) 

 

Leonardo da Vinci was, and still is, known as one of the greatest inventors and thinkers of 
the Italian Renaissance. He was an architect, musician, scientist, mathematician, and 
"inventor of genius." He especially excelled in science and art, and was always thinking 
outside of the box. Many of his ideas have been an inspiration for some modern technology. 

In this special chapter, we use version 1.0 of ParaEngine SDK (personal edition) to create a 
sample game scene, called Da Vinci World. The complete series of “Da Vinci World” is a 
collection of games which allow children to experiment with and fulfill their imaginations in 
3D worlds. We have tested the game among children aged 7 to 12 with some former gaming 
experience, and the result is quite positive. Children are more creative and experimental than 
we imagined. After watching the children creating game worlds for hours, adults usually 
reach the conclusion that children are the greatest inventors and thinkers of our time.  

The explicit purpose of this chapter is to teach casual readers how to use ParaEngine to 
quickly build a game world. Besides that, we hope: 

- To provide a tangible goal towards which new engine programmers may schedule to 
work.  

- To allow users (programmers, artists, designers, etc) to look up the related 
technologies in this book, when they are using them.  

- To give a simple outline of how a casual game can be developed.  
In the following sections, we follow steps to create the Da Vinci World sample game scene. 

Sections whose names start with “Do It Yourself” are advanced and usually require 
programming via the NPL scripting interface. Casual readers can skip these sections 
completely.  

 

B.1 Game Proposal and Design 

Goal  

Design a sample game scene, in which children can do experiments and fulfill their 
imaginations. 

Where does the game happen? 

It happens in a fantasy world surrounded by mountains with water and island in the middle. 
The world is beautiful but looks a bit barren at first. There should be some open flat land 
where buildings can be built and plants can be grown.  

What do I control? 
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The children control one character at a time in a third person or first person perspective. 

How many characters can I control? 

The children can populate the world with many characters. They can toggle between 
characters. 

What is the key point of the game? 

The key is to entice the children to fulfill their imaginations and stories by creating new 
elements, as well as, to discovery interactive parts of the world. 

How about Models, Characters, Game World Logics, UI, Effects, Audio, etc? 

We will use the default ones from ParaEngine SDK demo. ParaEngine Dev Studio plan to 
share resources with you under a very user-friendly license. Please read the SDK for details. 

Can I preview the game? 

Please go to our website www.paraengine.com to download. One can quickly go through 
the following pages to see some screen shots.  

 

B.2 Prepare Your Work Environment 

The only requirement to make this demo game is the installation of ParaEngine SDK 
personal edition.  

However, for more serious game making, lots of third party tools are used. For artists, you 
may need software like Photoshop, 3dsmax, Maya, Deep paint, etc. For designers and 
programmers, you need a word editor and a program editor, such as Ultraedit, or even visual 
studio. For all people, version control your artifacts can be top most important and some game 
studios choose to use version control software with user friendly interface, such as AlienBrain, 
Visual Source Safe, etc.  

 

B.3 Getting Used to ParaEngine SDK 

For casual users, ParaEngine SDK is just a single executable, called the default interface. 
One can create, edit and release using the same executable. It features more than a what-you-
see-is-what-you-get interface. Our design principle is to make it 100 percent functional, which 
means that with each click of the mouse, you bring something explicit to happen in the world. 
In fact, it is so designed that children aged 10-12 can quickly master it themselves; any 
operation can do no harm to the system as long as script files are not touched from an external 
editor. Hence, in the rest of the book, we will not teach instructions if it is on the default 
interface. 

For intermediary users, we offer another user interface, called ParaIDE, which runs side by 
side with the default interface. One can bring up ParaIDE by pressing F5 or select from the 
menu in the default interface. See Figure 19.1. The application on top is ParaIDE. The 3D 
application on the background is ParaEngine SDK’s default interface. These two applications 
can communicate at runtime. The ParaIDE provides advanced functionalities, such as asset 
management, database management, selection and property management, etc. The default 

http://www.paraengine.com/
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interface is usually what the game looks like once released. One can also edit and manipulate 
objects in the default interface. Once an object is selected in the default interface, we can 
change its properties either from the default interface or from ParaIDE.  

 
Figure 19.1 Default Interface and ParaIDE 

ParaEngine SDK professional edition have a collection of API for advanced developers to 
write plug-ins for ParaEngine through both native C++ and .Network Framework API. In fact, 
ParaIDE itself is written in C# language using ParaEngine Managed API for .Net Framework. 
Most future plug-ins of ParaEngine for advanced developers will be released in this way. One 
can find standard plug-ins as DLL files in the ./plugins directory. Most plug-ins including the 
ParaIDE is only used by developers, and does not need to be included when shipping the 
game. 

The scripting language or NPL is the only language that more serious developers need to 
learn when making games using ParaEngine. NPL is the main language for writing UI and 
game logics. When a game is released, all its script files must also be included. Most 
ParaEngine powered demos as well as the world editor (default interface) is completely 
written in NPL. So basically everything you see or interact in the 3D world is written in this 



 

 297 

language. One can also load and invoke DLL plug-ins written in other languages from the 
scripting interface, which extends the scripting interface greatly. 

Figure 19.2 shows components of ParaEngine, API and their programming language.  

 
Figure 19.2 ParaEngine components, API and programming language 

ParaEngine SDK also comes with a collection of tools. The most important tool is the 
model exporter. They allow serious game makers to import models, animations, effects, 
terrains, or even game scenes from professional 3D authoring environment, such as 3dsmax, 
to ParaEngine.  

 

B.4 Creating a New World 

A game may consist of many 3D worlds, some are huge and some are small. For this demo 
game, we need just one small world. Let us name it Da Vinci World. We can create it either 
from the default interface or ParaIDE.  

In ParaEngine, an important concept when creating a new 3D world is called inheritance. 
When creating a new 3D world, it allows users to specify a parent world from which the new 
3D world is derived (not cloned). It is similar to class inheritance in C++. When the parent 
world is changed, all its derived worlds also change unless the derived world has overridden 
or made changes to the modified portion of the parent world. In other words, the game engine 
automatically detects changes made to the current world, and it clones the smallest portion of 
the parent world if that portion has never been modified in the current world before. Figure 
19.3 shows the illustration. We see that portions of the current world’s game data are from its 
parent worlds.  

The smallest pieces of overridable game data in a game world are objects in a terrain tile, 
terrain elevations of a terrain tile, terrain texture layers of a terrain tile and NPCs of the whole 
world.  

ParaEngine 

C++ API

Managed API (.Net) 

NPL 

Default Interface

API 

Plug-ins 

Other plugins

ParaIDE

Release… 

Tool sets 
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Figure 19.3 World Inheritance 

Our website maintains a repository of game world templates. One can download a variety 
of game worlds from our website and start a new world on top of that. If one does not specify 
the parent world, it will derive from a default empty world with flat terrain and default of 
everything.  

To create a new world in ParaIDE, select menu File->New World, as shown in Figure 19.4. 

 
Figure 19.4 Creating a New World 

All game world data are stored in a folder with the same name as the input world name. A 
newly derived world may only be a few KB in size. As one makes changes to it, the size of 
the world will grow slowly. When releasing a world, make sure that you include everything in 
the world folder, as well as files in the parent worlds’ folder. However, if one overrides every 
portions of the parent world, there is no need to include the parent world any more.  

 

Parent worlds 

Current world 

World Inheritance 
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B.5 Making Game Scene 

A game scene comprises of terrain, models, characters, lights, and a few other global 
objects and effects. We can create and modify terrain, lights, and all global objects directly in 
the default interface. As for models and characters, one can use all models published from our 
website. ParaEngine Dev Studio has made these customizable models and characters in the 
hope that more people (young or experienced) can create high-quality game world in minutes. 
If you have the skills, you can follow the steps as described in section B.6, B.7 and B.8 to 
make or contribute your own models and characters. In this section, we assume that you are 
using assets released by ParaEngine SDK.  

We have observed children aged 10 to create 3D scenes using the default interface, as they 
wander in the world. It is quite a try-and-error process, which they enjoy very much. For older 
people like readers of this book, we suggest you plan in advance and start from the terrain 
first, and then models and characters. In the game proposal section, we have described our 
game scene verbally. Let us review it here: 

A fantasy world surrounded by mountains with water and island in the middle. The world is 
beautiful but looks a bit barren at first. There should be some open flat land where buildings 
can be built and plants can be grown. 

Now, we will use a sketch of Leonardo da Vinci to give you a better illustration. Serious 
game studios usually draw concept arts before designers set out making the scenes.  

 
Figure 19.5 Sketch of Leonardo da Vinci 

For this demo, we need not strictly follow the concept arts. And because you are limited by 
the number and type of available models, you can just try your best to make it feel right. 
Figure 19.6 and Figure 19.7 shows sample scenes made by us using only available terrain 
modifiers, textures and models. It might take one to several hours to complete for first time 
makers. So please be as patient as children. 
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Figure 19.6 Sample Scene Screenshot 1 

 
Figure 19.7 Sample Scene Screenshot 2 

The following three DIY sections teach you the basics of building your own advanced 
terrain and models. You can escape them all and continue with the B.9 section. 
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B.6 Do It Yourself: Advanced Terrain  

In the default interface, one can modify the terrain elevation and texture layers interactively. 
However, it will be slow and inefficient to make large terrains in the 3D environment of the 
default interface. ParaEngine comes with a terrain exporter tool for 3dsmax. It can export 
mesh grid from 3dsmax to “.raw” file (the height map file used by ParaEngine). The raw file 
is called terrain modifier file, which can be applied to the existing terrain in the game scene. 
Please refer to terrain chapter for more information.  

The advised terrain making procedure is: first making the terrain modifiers in 3dsmax or 
other dedicated software and then fine-tuning the terrain in the 3D environment using the 
default interface.  

 
Figure 19.8 Terrain exporter in 3dsmax 

Figure 19.8 shows the terrain exporter in 3dsmax. The exporter is written in 3dsmax script. 
One can start it in 3dsmax by running the start up script file: world editor/3dsmax plugin/ 
Start_ParaEditor.ms  

The terrain plug-in can create terrain at a given tile position in the world as well as terrain 
modifiers which can be applied at any location of the 3D world. We will only show how to 
create a terrain modifier here.  

A terrain modifier is an elevation or height map file of a square grid of arbitrary size. When 
the terrain modifier is applied to a location of the 3D world, it will add the height map in the 
terrain modifier to the terrain centered at that location. The edge of the modified terrain is 
smoothly interpolated between the original terrain height and the height in the modifier.  

To create a terrain modifier, you need to specify the grid size, such as 128; clear the text in 
the elev file text box to empty; and then press the Create New Terrain button. A mesh grid 
object will be generated. One can modify the mesh object, and then press Save Elev file.  

For the default interface to automatically locate your elevation file, please save the terrain 
modifier file as raw file under the ./model/others/terrain/ directory. When you open the 
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default interface, you will notice that your newly created terrain modifier is displayed under 
the terrain category. To apply the terrain modifier, move the character to the desired location 
and then double click the modifier name. If you use the ParaIDE, you can browse to the 
terrain modifier file in the asset list view, right click on the file icon and select Invoke in the 
pop up menu. See Figure 19.9. The actual size of the terrain modifier as appeared in the 3D 
world is proportional to the grid size. The proportion is subject to global game world settings. 
A 128*128 mesh grid will match exactly to the size of your terrain tile. So if your terrain tile 
size is 512*512 meters, then one grid in the mesh will be 4 meters long.  

 
Figure 19.9 Apply Terrain Modifier in ParaIDE 

ParaEngine comes with a collection of pre-made terrain modifiers. One can combine them 
to create versatile terrain. When the game world is saved, the elevation files of the entire 
world are saved as a collection of raw files. These raw files have the same format as the 
terrain modifier; so they can be imported to 3dsmax for fine tuning.  

 

B.7 Do It Yourself: Static Models 

To DIY your own static models is very simple if you are familiar with any of the 3d 
authoring environment. The static model format of ParaEngine is fully compatible with 
DirectX X file format. However, to access full features of ParaEngine, one needs to use the 
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ParaX Model Exporter plug-in provided by ParaEngine SDK. At the time of writing, 
ParaEngine only supports model exporters for 3dsmax version 6, 7 and 8.  

Please read the ParaX Model Exporter manual for more information. When making models 
in 3dsmax, artists should follow the following principles: 

- One generic unit in 3dsmax is one meter in ParaEngine. So it is advised that artists use 
meters or generic unit in 3dsmax. 

- The z axis in 3dsmax is y axis in ParaEngine. Fortunately, they all mean the world up 
direction. Basically, what one sees in 3dsmax is the same as that in ParaEngine. 

- Reset transform of the model before exporting. Please refer to 3dsmax manual for how 
to do it. 

- All mesh faces must be assigned a standard texture material in order to be treated as 
visible when exported to ParaEngine.  

- Objects or mesh face that does not have a material assigned to it is treated as physics 
face only. Physics faces will block characters and will not be rendered. We can use the 
3dsMax primitives such as boxes, cylinders, etc to build the physics faces in the model.  

- If there are multiple renderable meshes or objects in the scene, it is better to convert all 
of them to a single mesh before exporting. This can be done by first converting all 
objects to editable meshes, and then attaching all other meshes to a particular one. 
3dsmax will automatically combine all used materials to a single multi-material, which 
can be exported by the exporter. 

- For ordinary textures with or without transparency, one can use standard material and 
specify only the diffuse and opacity maps. If the texture is opaque, only specify the 
diffuse map and leave the opacity map empty. For texture with transparency, specify 
both the diffuse and opacity map. Please note that the diffuse and opacity map should 
be the same texture file, where the opacity is read from the alpha channel of the bitmap. 
Material that only uses diffuse map will be exported as DXT1 format which contains 1 
bit alpha; material with opacity map will be saved as DXT3 or DXT5 which has 3 bits 
alpha. Artist is advised to use "tga" file format during exporting. The ParaX Exporter 
will automatically save all used texture files as "dds" format according to their usage.  

- Texture UV: Never set texture tiling in the material editor, since they are not exported 
by the exporter. Instead, use UV mapping or UVW unwrapping in the 3dsmax modifier 
stack. 

- File path in ParaEngine are all relative to the root directory. Absolute file path is still 
supported, however, when deploying the game to a different location, the file will not 
be found. Hence, it is highly advised that one put the max file and its referenced 
textures in the same folder, or at least under the same root directory. The toot directory 
of a given file is defined as closest parent directory that contains the ParaEngine.sig 
file. If one looks at the ParaEngine SDK installation folder, it will find the sig file there.  

- Reflection map: specify ray-tracing in the reflection map of 3dsmax to export reflective 
surface. Currently, only horizontal reflective surfaces at y=0 plane is supported. 
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- Cubic environment map in 3dsmax is supported: Environment mapping: specify 
reflect/refract map in the reflection map of 3dsmax material to export environment 
mapped surfaces. The exporter will use the 6 surface files to generate the exported 
cubic texture file. The exported cubic texture file has the same name as the diffuse map 
plus "Env". For example, the diffuse texture is "face.dds", then the exported 
environment map will be "faceEnv.dds" 

- Light map must use a separate UV set and is specified as a bitmap in the reflection map 
channel of 3dsmax. The exported texture file has the same file name as the specified 
bitmap file. For example, if the reflection texture is "face.tga", the light map will be 
"face.dds".  

- The light map intensity can be specified by the amount property of the reflection map. 
The amount parameter in 3dsmax is [0,100]. The actual light map intensity exported is 
X/10, with the exception that 100 stands for 1. Hence, 10 is 1, 20 is 2, 99 is 9.9; yet 100 
is 1. light map may be shared among multiple materials 

- If the texture file name ends with _a{0-9}{0-9}{0-9}.xxx, it will be regarded as an 
animated texture sequence. Always specify the last texture in the sequence, such as 
“smoke_a120.tga”. All texture files can be animated, such as diffuse and light maps.  

It is advised that you browse the sample 3dsmax source files under the SDK’s model 
directory before exporting your first model. Once you are satisfied with your model in 
3dsmax, you can export it by selecting File Export (ParaEngine ParaX file). There are not 
many options and you do not even need to specify a valid file name. The ParaX Exporter will 
guess most of the options for you as well as the file name and location to be saved. After 
examining the guess report, click OK and it is done. See Figure 19.10 
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Figure 19.10 ParaX Model Exporter 

To view you models in the game engine, you can create an instance of the model using 
either the default interface or the ParaIDE. To create a model in the ParaIDE, browse to your 
model file in the asset list, and double click the file icon to create a model instance at the 
current player’s position.  

 

B.8 Do It Yourself: Characters 

Characters and animated models are a little bit more difficult to make. One needs to follow 
more strict rules in order to correctly export animated models.  

First of all, characters may have one to several hundreds animations. There is a default 
animation called standing animation which all characters must provide. Secondly, all 
animations of the same character must share the same bone structure as well as bounding 
weights or physiques. Thirdly, some animations are looped and some may have a global speed. 
Each character animation should be stored in a separate file. All character animation files 
must be put in the same directory. A character model directory contains only models files 
which share the same mesh and bones. 

When making characters with multiple animations, we usually start from the character with 
the standing animation. In order for ParaX model exporter to guess the correct options, we 
need to name each 3dsmax source file according to the following specifications. 
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sObjectName (nAnimID [, fAnimSpeed], [, nonloop]).max 

sObject Name is arbitrary. For example, "MyModel(0)" or "MyModel(4, 1.234)" or 
"MyModel(30, 0, nonloop)".  

nAnimID: this is the animation id for the max file. ParaEngine reserves animation id in the 
range [0,255]. Animation ID outside this range is user defined animation sequences. The 
mapping from id to their interpreted action can be found in the animation ID table of the 
exporter manual. For example, 0 means default standing animation; 4 means walking 
animation. 

fAnimSpeed: This specifies animation speed in meters per second unit. Default value is 0. 

"nonloop": if "nonloop" is present in the file name, the animation exported will be non-
looped, otherwise it is saved as looped animation. 

For example: suppose you have the following max and texture files in the ./dog/ directory 

./dog/dog (0).max 

./dog/dog_walk (4, 2.35).max 

./dog/dog.tga 

You can open ./dog/dog(0).max in 3dsmax, and select File Export (ParaEngine ParaX 
file), and then type anything as the file name.  When the export dialog pops up, you will see 
that the exporter has guessed most of your exporting options. You just need to select whether 
you want to export a single animation for testing or all animations in the current directories. If 
your models are OK, the exporter will generate a file at "./dog/dog.x", which contains your 
current animation or all animation sequences. This may takes some minutes if the character 
has many animation sequence files.  

It is advised that you browse the sample 3dsmax source files under the SDK’s character 
directory before exporting your first animated model. 

 

B.8.1 Special Rules 

There are more restrictive rules when making animated model than the static ones. If you 
do not follow the rules, the exported model will not look right in the game engine. Some of 
the common rules are given below. 

- All meshes and bone structures of the character should be the same in all character 
animation files. It is advised that one copy and paste the standing animation file when 
making other animations. 

- The character’s facing should be the positive x axis in 3dsmax. 

- The following animation method is supported: skin, physique, biped (motion capture), 
simple key transform. Please note that only one of these methods can be used for a 
single character.  

- Before binding bones to a mesh, reset the mesh’s transformation. 
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- Avoid using scale animation. If one has to, use uniform scale only, i.e. scale the same 
amount along x, y, z axis. The current exporter ignores the scale’s rotational axis. 

- Floating bones or floating meshes are not supported. In other words, all bones must 
have a single parent bone, and if a mesh is animated all of its vertices must be bound 
to at least one bone. 

- When using biped to animate characters, make sure that the initial pose of the character 
is the same as the pose of the character when the skin modifier is applied.  

- We allow models to be attached to other models, such as character body attachments or 
mount system. These are realized by adding special bones to the character. These 
special bones are converted to attachment points when exported. A bone whose name 
contains the following string will be regarded as attachments.  

 "Head" or "头部":  Up to 4 parent bones of the head bone is used to rotate the 
character's upper body.  

 "L UpperArm": left shoulder where you can attach armory.  

 "R UpperArm" right shoulder where you can attach armory. 

 "L Hand" left hand which can hold other object models. 

 "R Hand" right hand which can hold other object models. 

 "Mount" or "Shield" the mount position for car or horse, etc. It may also be the 
shield position where weapons may be attached on character models. “Mount1” 
and “Mount2” are reserved in case that there multiple mount attachment points. 

For example, if a car character defines a Mount bone at the seat position, and another 
human character has a mount animation sequence, then the game engine can automatically 
mount the human character to the car at runtime. Figure 19.11 shows animated model files in 
3dsmax and Figure 19.12 shows the animation result in the game engine.  

Character with “Mount” bone 
 

Character with mount animation

Figure 19.11 Mount Bone and Mount Animation 
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Figure 19.12 Mount one character over another 

 

B.9 Adding Artificial Intelligence 

Now we will add some AI to the game world, making it alive. Only character objects can 
have AI. There are some pre-made AI templates which can be assigned to the currently 
selected character, with a single click of the mouse in the default interface.  

B.9.1 Do it yourself: Artificial Intelligence 

To build your own AI, you need some knowledge about how characters are simulated in the 
game engine. Please refer to the AI chapter of the book for more information. AI in 
ParaEngine is layered; only the top layer can be edited completely via the scripting interface. 
The following call back events can be registered per character.  

On_Load Called when the character is loaded from disk or database to the 
scene. Although it is not called by the character simulator, it looks 
and functions like a simulation event. 

On_EnterSentientArea When other game objects of a different type entered the sentient 
area of this object. This function will be automatically called by 
the character simulator. 

On_LeaveSentientArea When no other game objects of different type is in the sentient 
area of this object. This function will be automatically called by 
the character simulator. 

On_Click When the player clicked on this object.  This function will be 
automatically called by the character simulator. 

On_Perception When other game objects of a different type entered the perceptive 
area of this object. This function will be automatically called by 
the character simulator. 

On_FrameMove This function is called every frame when the character is sentient. 
This is mostly used by AI controllers. 
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The event handler registrations can be done in both ParaIDE and the default interface by 
editing the character’s property. When a new character is created, all of its event handlers are 
empty. When you try to add a new event handler, you can either specify an existing handler 
from a script file, or let the game engine create a new empty handler for you. Figure 19.13 
shows the event handler properties of a character in the default interface.  

 
Figure 19.13 Event handler properties in the property window of default interface 

 

After clicking the open button next to the property field, a new script with the same name 
as the character will be automatically created in the ./character/ directory of the current world, 
and opened in the default script file editor as shown in Figure 19.14.  
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Figure 19.14 Empty event handlers script file in the editor 

When any event handler is called, a parameter called sensor_name contains the character’s 
name. We can get a character instance of the character by calling the following script 
command.  
local player = ParaScene.GetObject(sensor_name); 

We can access to all other perceived objects of the current character as shown in the 
example script below.  
function _character.a.On_Perception() 
 -- do your AI code here. 
 local player = ParaScene.GetObject(sensor_name); 
 if(player:IsValid() == true) then  
  local nCount = player:GetNumOfPerceivedObject(); 
  for i=0,nCount-1 do 
   local gameobj = player:GetPerceivedObject(i); 
   if(gameobj:DistanceTo(player) < 5) then 
    log(“Saw an object”); 
   end 
  end 
 end 
end 

It is a good practice to use “sensor_name” parameter to get the current character name 
instead of hard-code the character name in script. This allows the same event handler to be 
reused by multiple characters of the same type. However, in case a character handler is only 
used by a unique character in the game, one can directly use the character name in script. 
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The event handler registration information as well as the memory states of a persistent 
character are stored in the NPC database under the current world’s directory by default. We 
can view this database using ParaIDE. Just browse to the world directory in the asset list, 
select the database file and double click its file icon. See Figure 19.15. 

 
Figure 19.15 NPC database in ParaIDE 

It is advised that you see the sample AI templates written by us under the script/AI/ 
directory of the ParaEngine SDK. Also NPL programming reference is a must read for any 
one who wants to use the NPL language.  

B.9.2 Do it yourself: Using AI Controllers 

Instead of controlling the character each frame in the event handler, we can assign AI 
controllers to the character. We can regard AI controller as a certain logic unit. When they are 
initialized and assigned to a given character, it will automatically control the behavior of the 
character from that time on. This saves us development time and makes the AI logics clearer.  
Because AI controllers are mostly written in native C++ language, it runs faster than script 
instructions. Another advantage of using AI controller is that some pre-made tools are 
available to quickly customize a certain AI controller. For example, one can use the sequence 
AI controller to instruct the character to follow a certain path, where the path can be specified 
using a pre-made tool with graphic user interface.  
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The following are some code example of using three different kinds of AI controllers. 
Please note that various AI controllers can be combined to generate complicated AI behaviors.  

 

Face Tracking Controller 

Face tracking controller controls a character to always face a given target or another 
character. Face tracking controller has relatively high priority. This controller is commonly 
used when a player approaches an NPC. The NPC with a face tracking controller will 
automatically rotates its neck to face the incoming player. 

We can assign and release this controller at any place and at any time. For example, we can 
assign it in the On_Load() event handler, so that the character will always have this facing 
behavior when it is loaded. See below. The bold text enabled the face tracking controller.  
function _character.a.On_Load() 
 local player = ParaScene.GetObject(sensor_name); 
 if(player:IsValid() == true) then  
  local playerChar = player:ToCharacter(); 
  playerChar:AssignAIController("face", "true"); 
 end 
end 

 

Follow Controller 

Follow controller controls a character to follow another character as long as the target is in 
sight. The following script instructs the character to follow another player named “girlPC”.  
function _character.a.On_Load() 
 local player = ParaScene.GetObject(sensor_name); 
 if(player:IsValid() == true) then  
  local playerChar = player:ToCharacter(); 
  playerChar: AssignAIController("face", "true"); 
  playerChar: AssignAIController("follow", "girlPC 2.5 -1.57"); 
 end 
end 

The two additional parameters following the target player name is radius and angle, which 
specify the desired position of the following player around the target player. Figure 19.16 
shows the meanings of the two parameters. So the character in the example code will try to 
maintain a distance of 2.5 meters from the target player and stay to the left of the target.  
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Figure 19.16 Follow controller parameters 

Sequence Controller 

Sequence controller controls a character according to some predefined sequenced 
commands list. It executes at most one command per frame, and it will only execute the next 
command when the current command is finished. One can think of a sequence controller as a 
short computer program. The program may contain branch and loop operations. 

Sequence controller can be combined with character sensor events to model fairly complex 
AI logics. A sequence controller alone can be used to model behaviors such as patrolling 
guards, wandering enemy creatures, busy citizens on a city street, etc. 
function _character.a.On_Load() 
 local player = ParaScene.GetObject(sensor_name); 
 if(player:IsValid() == true) then  
   
  local playerChar = player:ToCharacter(); 
  playerChar: AssignAIController("face", "true"); 
 
  -- a sequence can be read from file or database; here I just hard-coded them. 
  local s = playerChar:GetSeqController(); 
  s:BeginAddKeys(); 
  s:Lable("start"); 
  s:PlayAnim("EmotePoint"); 
  s:Wait(3); 
  s:Turn(0); 
  s:WalkTo(10,0,0); 
  s:Wait(3); 
  s:Turn(-1.57); 
  s:RunTo(0,0,10); 
  s:Turn(3.14); 
  --s:Pause(); 
  s:WalkTo(-5,0,0);s:Jump();s:RunTo(-5,0,0); 
  s:Turn(1.57); 
  s:MoveTo(0,0,-10); 
  s:Goto("start"); 
  s:Exec(";NPC_SEQ_EXEC_Test()"); 
  s:EndAddKeys(); 
 end 
end 
 

angle 

radius 

Following player1 

Following player2 

Follow target 
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function NPC_SEQ_EXEC_Test() 
 local player = ParaScene.GetObject(sensor_name); 
 if(player:IsValid() == true) then  
  log("this is from sequence controller of character"..sensor_name); 
 end 
end 

The above sequence program tells the player to walk around a rectangular path repeatedly, 
while performing some animations. Please refer to the NPL programming reference for exact 
meanings of sequence commands.  

All way points in sequence controller are specified in relative position, so that the same 
sequence controller may be reused for different characters.  

 

B.10 Do It Yourself: User Interface 

Your user interface stuff is written in NPL scripting language. This section does not teach 
you how to use this language. It only suggests some basic ideas of how the existing SDK 
script files are organized and how to change the user interface by modifying these files.  

B.10.1 Game Loop File 

First of all, the first script file which will be executed when the application starts 
is ./script/gameinterface.lua. This script file is also the default game loop file, which will be 
executed several times per second.  

Basically, the first thing that you want to do in it is to change the game loop file to a new 
one of your choice. We can do it by calling. 

ParaGlobal.SetGameLoop("(gl)script/kids/main.lua"); 

After calling this function, the “gameinterface.lua” will never be called again. Instead the 
newly specified file (in the example, "script/kids/main.lua") becomes the current game loop 
file, which will be executed several times per second. It is in this script that you create those 
first user interfaces in your game.  

B.10.2 UI Controls 

UI controls are basically created in a similar way like in other windows programming 
language. For example, a container and a child button control can be created as below.  
 local window, button, text; --declare local variables 
 --create a new window called "mainwindow" using left top alignment at (50,20) with size 600*400 
 window=ParaUI.CreateUIObject("container","mainwindow","_lt",50,20,600,400); 
 --attach the UI object to screen (root) 
 window:AttachToRoot(); 
 --create a new button called "btnok" at (50,350) with size 70*30 
 button=ParaUI.CreateUIObject("button","btnok","_lt",50,350,70,30); 
 --attach the button to the window 
 window:AddChild(button); 
 --set text to be displayed on the button 
 button.text="OK"; 
 --if the button is clicked, specify the event handler 
 button.onclick=";ParaUI.Destroy(\"mainwindow\");"; 
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B.10.3 IDE libraries 

ParaEngine SDK comes with many useful script files for composing and editing the 3D 
environment and 2D user interface. These script files are under the ./script/IDE/ directory. For 
an example of using these IDE libraries, one can refer to script files under ./script/demo/ 
and ./script/kids/. The “demo” folder contains the source code for the default interface’s main 
menu bar and all of its function modules, such as object creation and editing, terrain and 
ocean editing, etc. The “kids” folder contains the source code for everything else in the 
default interface.  

B.11 Release 

There are a number of ways to release the sample game. If you only used the default 
interface and ParaIDE to build the game, you can just release all files under your world folder. 
People who have an instance of ParaEngine can open your world and play in it. However, if 
you used any of the stuff in the do-it-yourself sections, you will also need to include all model 
and script files besides the files in the world folder. The most complete way to release a game 
is to include everything under the ParaEngine install directory.  

B.12 Conclusion 

Making a game can be as easy as playing it. However making serious game from the 
ground up can be a daunting task. The design principle of ParaEngine is to simplify game 
making so much that anybody with or without former computer experience can use it to create 
interactive 3D worlds. For intermediary and advanced users, it gives them access to the deep 
parts of the game engine, and facilitates them to create resources that could be shared by other 
developers.  
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Appendix C 
About ParaEngine 

C.1 Introduction 

ParaEngine is a distributed 3D computer game engine. It aims to develop the next 
generation massively multiple-player online game, where the game world content and logics 
are distributed over arbitrary networks. Neural Parallel Language (or NPL) is an extensible 
programming language which separates code logics from its hardware network environment. 
It is a new programming standard designed to support (1) frequent code updates, (2) complex 
graphic user interface and human-computer interactions, and (3) reconfigurable code 
deployment in a distributed network environment. The language is tightly integrated with 
ParaEngine. 

 

C.2 ParaEngine Specifications 

The following table shows the features of ParaEngine.  

Table 1.  ParaEngine Specifications 
Supported 
OS: Windows XP/2000/2003 server 

API: DirectX 9.0C 
Language: C/C++ (VS.NET 7.1) 
Features: Graphic engine: 

- 3D scene management and rendering system, supporting 40,000m*40,000m 
continuous game world. It is suitable for RPG games with super large continuous
map, many globally movable characters, complex scene triggers and story design. 

- Advanced programmable pipeline for all renderable objects in the scene.  
- Flexible shader management on a per object basis. One can dynamically change the 

shader program of any scene objects on a per frame basis. 
- Fixed function pipeline support, which allows the game engine to run on older 

machines while retaining most of the graphics qualities. It can be mixed with the 
programmable pipeline to adapt to a wide variety of graphics cards on the market. 

- Hardware-occlusion testing can be turned on in the rendering pipeline, if there are a 
huge number of small yet dense models in the game scene.  

- Tile based ROAM/CLOD terrain engine. Because it is tiled, there is no limit to the 
size of the terrain. Terrain holes can be created dynamically, which allows game 
developers to build caves, tunnels or underground world directly in the same global 
terrain environment. In-game terrain editing supports height field modifications,
unlimited multi-texturing on terrain surface, auto-breaking super large terrain texture 
files in to smaller ones, fast ray-tracing on global height field. 

- FFT based ocean wave simulation with reflection and refraction mapping for both 
above and underwater scenes. Supporting real time shorelines and underwater scene 
blur effect.  

- Unlimited ranged light sources can be put anywhere in the game world.  
- Robust shadows: supporting both shadow volume and shadow mapping at the same 

time. 
- Game resource management system: textures (dds, png, tga, bmp, jpg), 3D objects (x 

file, m2, ParaX file), 3D skeletal animation (X file, m2 and ParaX file), effect file (FX 
file), sound (wav, mp3), virtual file management (zip), database file management. 
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- A comprehensive 2.5D GUI engine, fully scriptable through the NPL language. Drag 
and drop controls, scrollable containers, three-state buttons, list box, slider bar, grid 
view, AVI video player, edit box, IME edit box supporting various language input 
methods, supporting GUI objects attached to 3D scene objects. 

- Skeletal animation with customizable character appearance and reconfigurable 
equipment, such as hair style, skin color, clothes, etc. Settings can be made persistent 
by the pre-designed database. Supporting BVH motion capture export for biped based 
skeletons. 

- Particle systems are supported in the animation systems 
- Three customizable follow cameras modes and one free camera mode. The camera 

will automatically position itself to avoid collision with the view frustum and the 
physical environment. Thus, it is eligible for third-person RPG games. 

- In-game movie recording in any movie format, such as AVI.  
- Fast mouse ray-picking with 3D scene objects. 
- [Effect] global sunlight simulation. It will affect shadows and scene illumination.  
- [Effect] per-pixel lighting and fog can be turned on in each model shader. 
- [Effect] For each renderable object, some other effects can be dynamically applied to 

it when necessary, such as object construction shader, occlusion shader, shadow 
mapping shader, etc. 

- [Effect] Cubic environment map, animated texture, reflective texture, light map on a 
separate UV set, all of which can be exported to the game engine.  

 
Scripting engine: 
- The build-in scripting engine is powered by NPL language. It mimics the functioning 

of neural networks and codes the logics of distributed game world into files that could 
be deployed to arbitrary runtime locations on the network. 

- In the NPL programming environment, it makes little difference between developing 
network applications and stand-alone ones.  

- All API of the game engine are exposed through the scripting interface, including 
GUI, game events, 3D scene management, AI game logics, resource management, 
networking, database queries, etc. It is possible to develop a traditional RPG game 
through the scripting interface only. The scripting interface is well documented with 
over 20, 000 lines of source code examples.  

- The new scripting paradigm implies new ways of game content development on the 
following aspects: online game and game society establishment and maintenance, 
non-linear stand-alone AI behaviors and networked AI behaviors, stand-alone game 
story development and network distributed story development, game cut-scene design 
and interactive game movie shooting, game map design/storage/transmission, visual 
scripting environment, etc.  

- All network behaviors are written in NPL.  
 
Middleware support: 
- Polygon level physics effect middleware support [optional]: Novodex [Havok, ODE]
- Vegetation middleware support [optional]: [speed tree] 
 
AI, physics, and others: 
- Fast character simulation engine. It supports a large number of characters on a vast 

continuous game world (as long as 32bits floating point position vector do not lose 
accuracy). It integrates well with the global terrain and ocean engine. It provides 
interfaces for path-finding, perception, collision detection and response. It supports 
ray picking based character controller. For each character, quite a few character 
sensors can be turned on to process custom character AI logics in the NPL script 
callback functions.  

- AI controllers: multiple hard-coded AI controllers can be parameterized and combined 
with each other or with character sensor scripts to efficiently emulate convincing AI 
behaviors. Supported AI controllers are: (1) Movie controller: it can record and replay 
character actions in a time accurate manner. This is an easy way to build in-game 
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character cinematic. (2) Sequence controller: a list of AI commands to be executed 
one or several per frame. It can be used to perform general NPC logics such as 
patrolling, dialoging, etc. (3) Combat controller: such as attack, evade, flee actions. 
(4) Face tracking controller: rotate the character’s neck to face a target. (5) Follow 
controller: follow another object.  

- Biped state manager. It is a finite state machine which applies jumping, walking and 
swimming animation, etc and their transitional animations automatically, according to 
the physical environment.  

- Mount system: characters can be mounted on other characters, such as a person be ing 
mounted on a horse. 

- Local database support, supporting most SQL-92 standard.  
- Debugging and logging can be turned on which tracks all aspects of the game engine 

status.  
- [Game object] missile object. Firing a missile to any place in the game world.  
- [Game object] D&D based RPG character object. Character attributes are exposed 

through the scripting interface and character data is made persistent by the database. 
This is a helper game object for building simple RPG game. 

 
Tools and libraries: 
- 3dsmax7&8 model exporters: both static and animated models are supported. 

Characters with multiple animation sequences are also supported.  
- 3dsmax terrain, scene exporters: this is written in 3dsmax script, and we allow users to 

modify the source code to suit their needs in their own specific level design tools. 
- Virtual world builder: This is a simple to use in-game game development 

environment. It comes with a free collection of game art data. There are no 
sophisticated interfaces in it; even children can learn to play with it. One can create a 
huge 40,000m*40,000m game world by just mouse clicking and editing simple game 
events (the latter is only for serious users). Editable entities in the world builder 
includes: terrain, ocean, models, characters, GUI, sounds, lights, scripts, etc. It also 
supports a powerful feature called world inheritance, in which a new world can be 
built by inheriting from multiple existing game worlds. Virtual world builder is 
written entirely by our proprietary NPL scripting language and we allow users to 
modify the source code to suit their needs in their own specific level design tools. 
Chinese version only. English version is planned at the end of 2006. 

- World asset manager: managing resources used in a game title. Source code in C# 
- In-game movie recorder: with source code in NPL 
- In-game GUI IDE: with source code in NPL 
- Third party tools: virtual file browser, deep exploration (3D model viewers), sqlite 

analyzer (database query builder), ultra edit (optional script editor). 
- The game engine functionalities can be extended or customized through three set of 

API: (1) NPL scripting system (2) C++ API (3) .Net Framework API.  
- ParaIDE: another IDE of the game engine completely written in C# using the 

ParaEngine .Net Framework API. Source code available. It features resource 
management, object property editing, game world management, client database 
management, etc. 

 
Documentation and support: 
- NPL scripting reference: (150 pages) English version only. 
- Demo “Parallel World”: It is a distributed game, built on top of ParaEngine. Player 

may have its own game world hosted like a personal website on its PC or other web 
severs. It is available on our website at the end of 2006.  

- Artists’ guide: (50 pages) both Chinese and English version.  
- Book “Design and Implementation of a Distributed Game Engine”: (approx. 350 

pages) written by the main author of ParaEngine. Available in print in September 
2006. English version only. Chinese version is planned at the end of 2006.  

- ParaEngine design documentation: (approx. 2000 pages) only available for enterprise 
edition users. English version only. 
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- Website forums: http://www.paraengine.com   
 

Summary: ParaEngine is a distributed 3D computer game engine. It aims to develop the next 
generation online games, where the game world content and logics are distributed over 
arbitrary networks. 
 

License: To be released in three editions: 
- Personal Edition: (Free of charge) Users can take the full advantage of NPL 

scripting language to construct their own virtual game world. The following is also 
available: source code of virtual world builder written in NPL language, 
documentation and tutorials of NPL, all ParaEngine related tools and libraries. It can 
be used for non-commercial uses and commercial uses with some limitations. 
Available in September 2006. 

- Professional Edition: The personal edition plus partial source code of the game 
engine (including all tools’ source code) and technical support. Available now. 

- Enterprise Edition: The professional edition plus source code of the game engine 
and technical support. We can also modify the game engine according to your needs. 
Available now.  

 

C.3 About ParaEngine Dev Studio 

ParaEngine Tech Studio (P.E.) focuses on the research and development of a distributed 
computer game engine called ParaEngine. Based on our proprietary game engine technologies, 
we are building various applications ourselves and we are also working with licensed clients 
who use ParaEngine in their own projects. We believe that game technology is the driving 
force to a new 3D Internet or web 3D. We would like you to join us or cooperate with us to 
build innovative games or other 3D applications. Please contact me directly by email: 
lixizhi@yeah.net. Also please visit our website at www.paraengine.com for more information. 

 

http://www.paraengine.com/
mailto:lixizhi@yeah.net
http://www.paraengine.com/
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